Abstract:
전자디바이스는디스플레이상에표시될콘텐츠를생성할수 있다. 디스플레이는콘텐츠의이미지프레임들을표시하기위한액정디스플레이픽셀들의어레이를가질수 있다. 이미지프레임들은전하축적효과의감소를돕기위하여양의극성및 음의극성으로표시될수 있다. 전하축적추적기는이미지프레임들을분석하여과도한전하축적의위험이존재하는시기를결정할수 있다. 전하축적추적기는그레이레벨, 프레임듀레이션, 및프레임극성에관한정보를분석할수 있다. 전하축적추적기는전체이미지프레임들에대한전하축적메트릭을계산할수 있거나또는각각의프레임의하위영역들을개별적으로처리할수 있다. 하위영역들이개별적으로처리되면, 각각의하위영역은과도한전하축적의위험에대하여개별적으로모니터될수 있다.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
Abstract:
One embodiment describes an electronic display that displays image frames with a first refresh rate or a second refresh rate, in which the second refresh rate is lower than the first refresh rate; a display driver that writes the image frames by applying voltage to a display panel; and a timing controller that receives first image data from an image source, in which the first image data describes a first image frame and a first desired refresh rate equal to the second fresh rate; and that instructs the display driver to apply a first set of voltage polarities to the display panel to display first image frame at the first refresh rate and to apply a second set of voltage polarities to the display the first image frame at the second refresh rate when polarity of inversion imbalance accumulated is equal to polarity of the first set of voltage polarities.
Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The image frames may be displayed with positive and negative polarities to help reduce charge accumulation effects. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may analyze information on gray levels, frame duration, and frame polarity. The charge accumulation tracker may compute a charge accumulation metric for entire image frames or may process subregions of each frame separately. When subregions are processed separately, each subregion may be individually monitored for a risk of excess charge accumulation.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.