Abstract:
Some electronic devices store various types of confidential information such as passwords, account numbers, credit card numbers, etc. This information may be shared with other electronic devices owned by the same user. However, electronic devices are often lost, stolen, or replaced with a newer model. Ideally, a user should be able to install this confidential data on a new device easily. At the same time, however, the confidential data should be stored in such a way that the data is protected from attackers.
Abstract:
Some embodiments of the invention provide a method for a trusted (or originator) device to modify the security state of a target device (e.g., unlocking the device) based on a securing ranging operation (e.g., determining a distance, proximity, etc.). The method of some embodiments exchanges messages as a part of a ranging operation in order to to determine whether the trusted and target devices are within a specified range of each other before allowing the trusted device to modify the security state of the target device. In some embodiments, the messages are derived by both devices based on a shared secret and are used to verify the source of ranging signals used for the ranging operation. In some embodiments, the method is performed using multiple different frequency bands.
Abstract:
A user that owns multiple devices with overlapping functionality is becoming increasingly common. Smartphones, tablets, and computers all access the web, allow a user to process photos, etc., and users tend to have several such devices. Thus, a user wanting to share data between their devices and have access to data on multiple devices is increasingly common as well. Users may commonly use all sorts of different techniques to transfer data between devices, such as flash memory sticks, e-mail, etc. More efficient techniques for automatically sharing data between a user's devices are desired.
Abstract:
Some embodiments provide a method for a first device to synchronize a set of data items with a second device. The method receives a request to synchronize the set of data items stored on the first device with the second device. The method determines a subset of the synchronization data items stored on the first device that belong to at least one synchronization sub-group in which the second device participates. Participation in at least one of the synchronization sub-groups is defined based on membership in at least one verification sub-group. The first and second devices are part of a set of related devices with several different verification sub-groups. The method sends only the subset of the synchronization data items that belong to at least one synchronization sub-group in which the second device participates to the second device using a secure channel.
Abstract:
Some embodiments provide a method for a first device that identifies definitions of different groups of devices, each of which is defined by a set of properties required for a device to be a member. The method monitors properties of the first device to determine when the device is eligible for membership in a group. When the first device is eligible for membership in a first group of which the device is not a member, the method sends an application for membership in the first group signed with at least a private key of the device to at least one other device that is a member of the first group. When the first device becomes ineligible for membership in a second group of which the first device is a member, the method removes the device from the second group and notifies other devices that are members of the second group.
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia , receive user account information from the electronic device, authenticate a user account with a commercial entity using the received user account information, detect a commerce credential associated with the authenticated user account, run a commercial entity fraud check on the detected commerce credential, commission the financial institution subsystem to run a financial entity fraud check on the detected commerce credential based on the results of the commercial entity fraud check, and facilitate provisioning of the detected commerce credential on the electronic device based on the results of the financial entity fraud check. Additional embodiments are also provided.
Abstract:
Some embodiments provide non-transitory machine-readable medium that stores a program which when executed by at least one processing unit of a device synchronizes a set of key chains stored on the device with a set of other devices. The device and the set of other devices are communicatively coupled to one another through a peer-to-peer (P2P) network. The program receives a modification to a keychain in the set of keychains stored on the device. The program generates an update request for each device in the set of other devices in order to synchronize the set of keychains stored on device with the set of other devices. The program transmits through the P2P network the set of update requests to the set of other devices over a set of separate, secure communication channels.