Abstract:
Anodic oxide coatings and methods for forming anodic oxide coatings on metal alloy substrates are disclosed. Methods involve post-anodizing processes that improve the appearance of the anodic oxide coating or increase the strength of the underlying metal alloy substrates. In some embodiments, a diffusion promoting process is used to promote diffusion of one or more types of alloying elements enriched at an interface between the anodic oxide coating and the metal alloy substrate away from the interface. The diffusion promoting process can increase an adhesion strength of the anodic oxide film to the metal alloy substrate and reduce an amount of discoloration due to the enriched alloying elements. In some embodiments, a post-anodizing age hardening process is used to increase the strength of the metal alloy substrate and to improve cosmetics of the anodic oxide coatings.
Abstract:
A process is disclosed for minimizing the difference in thermal expansivity between a porous anodic oxide coating and its corresponding substrate metal, so as to allow heat treatments or high temperature exposure of the anodic oxide without thermally induced crazing. A second phase of higher thermal expansivity than that of the oxide material is incorporated into the pores of the oxide in sufficient quantity to raise the coating's thermal expansion coefficient. The difference in thermal expansion between the anodic oxide coating and underlying metal substrate is reduced to a level such that thermal exposure is insufficient for any cracking to result. The second phase may be an electrodeposited metal, or an electrophoretically deposited polymer. The second phase may be uniformly deposited to a certain depth, or may be deposited at varying amounts among the pores.
Abstract:
Anodizing processes for providing durable and defect-free anodic oxide films, well suited for anodizing highly reflective surfaces, are described. In some embodiments, the anodizing electrolyte has a sulfuric acid concentration substantially less than conventional type II anodizing. In some embodiments, the electrolyte includes a mixture of sulfuric acid and one or more organic acids. In further embodiments, sulfuric acid is a relatively minor additive to an organic acid, primarily serving to minimize discoloration. The processes enables porous, optically clear, and colorless anodic films to be grown in a manner similar to conventional Type II sulfuric acid anodizing, but at lower current densities and/or higher temperatures, without compromising film surface hardness. The thickness uniformity of the resulting anodic oxide films can be within 5% between grains of {111 }, {110} and {100} surface orientations. Furthermore, the anodic oxide films have minimal incorporated sulfates, thereby avoiding certain cosmetic and structural defects.
Abstract:
An electronic device can include a housing and a support component joined to the housing. The support component can include a thermal conduction layer defining a first surface and a second surface opposite the first surface. The support component can also include a first support layer overlying the first surface and a second support layer overlying the second surface. A ratio of the thickness of the thermal conduction layer to the combined thickness of the first support layer and the second support layer can be at least 1.5.
Abstract:
Techniques for making glass components for electronic devices are disclosed. The techniques disclosed herein can be used to modify a glass workpiece to form a three-dimensional glass component, such as a glass cover member. The techniques may involve reshaping the glass workpiece, fusing glass layers of the workpiece, or combinations of these. Glass components and electronic devices including these components are also disclosed.
Abstract:
Micro additions of certain elements such as zirconium or titanium are added to high strength aluminum alloys to counter discoloring effects of other micro-alloying elements when the high strength alloys are anodized. The other micro-alloying elements are added to increase the adhesion of an anodic film to the aluminum alloy substrate. However, these micro-alloying elements can also cause slight discoloration, such as a yellowing, of the anodic film. Such micro-alloying elements that can cause discoloration can include copper, manganese, iron and silver. The micro additions of additional elements, such as one or more of zirconium, tantalum, molybdenum, hafnium, tungsten, vanadium, niobium and tantalum, can dilute the discoloration of the micro-alloying elements. The resulting anodic films are substantially colorless.
Abstract:
This disclosure relates to rapid and repeatable tests that can be used to evaluate the interfacial adhesion of coatings to substrates. In particular embodiments, tests are used to assess the resistance of anodic oxides to delamination from aluminum substrates. The tests can be conducted using standard hardness test equipment such as a Vickers indenter, and yield more controlled, repeatable results than a large sample of life-cycle tests such as rock tumble tests. In particular embodiments, the tests involve forming an array of multiple indentations within the substrate such that stressed regions where the coating will likely delaminate are formed and evaluated.
Abstract:
Anodic oxide coatings and methods for forming anodic oxide coatings on metal alloy substrates are disclosed. Methods involve post-anodizing processes that improve the appearance of the anodic oxide coating or increase the strength of the underlying metal alloy substrates. In some embodiments, a diffusion promoting process is used to promote diffusion of one or more types of alloying elements enriched at an interface between the anodic oxide coating and the metal alloy substrate away from the interface. The diffusion promoting process can increase an adhesion strength of the anodic oxide film to the metal alloy substrate and reduce an amount of discoloration due to the enriched alloying elements. In some embodiments, a post-anodizing age hardening process is used to increase the strength of the metal alloy substrate and to improve cosmetics of the anodic oxide coatings.
Abstract:
An electronic device can include a housing and a support component joined to the housing. The support component can include a thermal conduction layer defining a first surface and a second surface opposite the first surface. The support component can also include a first support layer overlying the first surface and a second support layer overlying the second surface. A ratio of the thickness of the thermal conduction layer to the combined thickness of the first support layer and the second support layer can be at least 1.5.