Abstract:
Methods and systems for manufacturing composite parts that include anodizable portions and non-anodizable portions such that an interface between the anodizable portions and non-anodizable portions are free of visible defects are described. The non-anodizable portions can be made of anodizable metals such as aluminum or aluminum alloy. The non-anodizable portions are made of material that do not generally form an anodic film, such as plastic, ceramic or glass materials. In particular, the methods described relate to manufacturing methods that are compatible with anodizing processes and avoid defects related to anodizing processes. In particular embodiments, the methods involve avoiding trapping of anodizing chemicals within a gap between an anodizable portion and a non-anodizable portion, which prevents the anodizing chemicals from disrupting the uptake of dye in a post-anodizing dyeing process.
Abstract:
Laser-based techniques for cutting and drilling of transparent components are disclosed. These laser-based techniques rely on laser modification of transparent substrates followed by chemical etching and are suitable for use with a variety of transparent substrates. Transparent components and enclosures and electronic devices including the transparent components are also disclosed herein.
Abstract:
A CNC system can include a cylinder adapted to rotate about, travel along, and deliver a force in an axial direction, an extension coupled to a distal end of and extending outward from the elongated component in a direction perpendicular to the axial direction, and a removable fixture adapted to receive the axial force and to be moved and positioned thereby along a plane (i.e., two directions) substantially perpendicular to the axial direction. The fixture has a central opening along the first direction adapted to receive the elongated component, and includes external features adapted to guide manufacturing operations for other manufacturing components. Chamfers on both the extension and removable fixture convert the downward axial force into a plurality of lateral forces that move the fixture against a receiver base. Datums located at guide holes in the fixture stop such lateral movement when the movement causes them to contact guide pins coupled to the receiver base.
Abstract:
Techniques for making glass components for electronic devices are disclosed. The techniques disclosed herein can be used to modify a glass workpiece to form a three-dimensional glass component, such as a glass cover member. The techniques may involve reshaping the glass workpiece, fusing glass layers of the workpiece, or combinations of these. Glass components and electronic devices including these components are also disclosed.
Abstract:
Methods for creating sapphire windows are provided herein. In particular, one embodiment may take the form of a method of manufacturing sapphire windows. The method includes obtaining a polished sapphire wafer and applying decoration to the sapphire wafer. The method also includes cutting the sapphire wafer into discrete windows. In some embodiments, the cutting step comprises laser ablation of the sapphire. The window is decorated by ink printing. The sapphire is either grown or extruded.
Abstract:
Techniques for making glass components for electronic devices are disclosed. The techniques disclosed can be used to shape a glass workpiece to form a three-dimensional glass component, such as a glass cover member. Glass components and enclosures and electronic devices including the glass components are also disclosed.
Abstract:
A high gloss deep black housing for a handheld electronic device is disclosed having either a textured or a mirror finish. Methods for preparing a housing having the high gloss deep black finish are also disclosed, including housings for mobile phones.
Abstract:
Manufacturing methods related to anodizing of metal parts are described. In particular, pre-anodizing and post-anodizing methods for forming a consistent and defect-free interface between metal and non-metal sections of a part are described. Methods involve preventing residues from various manufacturing processes from entering a gap or space at the interface between the metal and non-metal section of the part and that can disrupt subsequent anodizing and anodic film dyeing processes. In particular embodiments, methods involve forming a barrier layer or filler layer between the metal and non-metal sections. Portions of the barrier layer or filler layer can be removed prior to anodizing. The resultant part has a well-defined and uniform space between the metal and non-metal sections that is free from visual defects.