Abstract:
This disclosure pertains to devices, methods, and computer readable media for performing panoramic photography processing techniques in handheld personal electronic devices. A few generalized steps may be used to carry out the panoramic photography processing techniques described herein: 1.) acquiring image data from the electronic device's image sensor's image stream; 2.) displaying a scaled preview version of the image data in real-time on the device's display; 3.) performing "motion filtering" on the acquired image data; 4.) generating full-resolution and lower-resolution versions of portions of the images that are not filtered out by the "motion filtering" process; 5.) substantially simultaneously "stitching" both the full-resolution and lower-resolution image portions together to create the panoramic scene; and 6.) substantially simultaneously sending the stitched version of the lower-resolution image portions to a preview region on the device's display and storing the stitched version of the full-resolution image portions to a memory.
Abstract:
A graphical user interface (GUI) element permits a user to control an application in both a coarse manner and a fine manner. When a cursor is moved to coincide or overlap the displayed GUI element, parameter adjustment is made at a first (coarse) granularity so that rapid changes to the target parameter can be made ( e.g ., displayed zoom level, image rotation or playback volume). As the cursor is moved away from the displayed GUI element, parameter adjustment is made at a second (fine) granularity so that fine changes to the target parameter can be made. In one embodiment, the further the cursor is moved from the displayed GUI element, the finer the control.
Abstract:
A graphical user interface (GUI) element permits a user to control an application in both a coarse manner and a fine manner. When a cursor is moved to coincide or overlap the displayed GUI element, parameter adjustment is made at a first (coarse) granularity so that rapid changes to the target parameter can be made (e.g., displayed zoom level, image rotation or playback volume). As the cursor is moved away from the displayed GUI element, parameter adjustment is made at a second (fine) granularity so that fine changes to the target parameter can be made. In one embodiment, the further the cursor is moved from the displayed GUI element, the finer the control.
Abstract:
The techniques disclosed herein use a compass, MEMS accelerometer, GPS module, and MEMS gyrometer to infer a frame of reference for a hand-held device. This can provide a true Frenet frame, i.e., X- and Y-vectors for the display, and also a Z-vector that points perpendicularly to the display. In fact, with various inertial clues from accelerometer, gyrometer, and other instruments that report their states in real time, it is possible to track the Frenet frame of the device in real time to provide a continuous 3D frame-of-reference. Once this continuous frame of reference is known, the position of a user's eyes may either be inferred or calculated directly by using a device's front-facing camera. With the position of the user's eyes and a continuous 3D frame-of-reference for the display, more realistic virtual 3D depictions of the objects on the device's display may be created and interacted with by the user.
Abstract:
The invention relates to systems, methods, and computer readable media for responding to a user snapshot request by capturing anticipatory pre-snapshot image data as well as post-snapshot image data. The captured information may be used, depending upon the embodiment, to create archival image information and image presentation information that is both useful and pleasing to a user. The captured information may automatically be trimmed or edited to facilitate creating an enhanced image, such as a moving still image. Varying embodiments of the invention offer techniques for trimming and editing based upon the following: exposure, brightness, focus, white balance, detected motion of the camera, substantive image analysis, detected sound, image metadata, and/or any combination of the foregoing.
Abstract:
This disclosure pertains to devices, methods, and computer readable media for performing positional sensor-assisted panoramic photography techniques in handheld personal electronic devices. Generalized steps that may be used to carry out the panoramic photography techniques described herein include, but are not necessarily limited to: 1.) acquiring image data from the electronic device's image sensor; 2.) performing "motion filtering" on the acquired image data, e.g., using information returned from positional sensors of the electronic device to inform the processing of the image data; 3.) performing image registration between adjacent captured images; 4.) performing geometric corrections on captured image data, e.g., due to perspective changes and/or camera rotation about a non-center of perspective (COP) camera point; and 5.) "stitching" the captured images together to create the panoramic scene, e.g., blending the image data in the overlap area between adjacent captured images. The resultant stitched panoramic image may be cropped before final storage.
Abstract:
In many videoconferencing applications, bandwidth is at a premium, and thus, it is important to encode a given video frame intelligently. It is often desirable that a larger amount of information be spent encoding the more important parts of the video frame, e.g., human facial features, whereas the less important parts of the video frame can be compressed at higher rates. Thus, there is need for an apparatus, computer readable medium, processor, and method for intelligent skin tone and facial feature aware videoconferencing compression that can "suggest" intelligent macroblock compression ratios to a video encoder. The suggestion of compression rates can be based at least in part on a determination of which macroblocks in a given video frame are likely to contain skin tones, likely to contain features (e.g., edges), likely to contain features in or near skin tone regions, or likely to contain neither skin tones nor features.
Abstract:
Generating an image with a selected level of background blur includes capturing, by a first image capture device, a plurality of frames of a scene, wherein each of the plurality of frames has a different focus depth, obtaining a depth map of the scene, determining a target object and a background in the scene based on the depth map, determining a goal blur for the background, and selecting, for each pixel in an output image, a corresponding pixel from the focus stack.
Abstract:
Generating a focus stack, including receiving initial focus data that identifies a plurality of target depths, positioning a lens at a first position to capture a first image at a first target depth of the plurality of target depths, determining, in response to capturing the first image and prior to capturing additional images, a sharpness metric for the first image, capturing, in response to determining that the sharpness metric for the first image is an unacceptable value, a second image at a second position based on the sharpness metric, wherein the second position is not included in the plurality of target depths, determining that a sharpness metric for the second image is an acceptable value, and generating a focus stack using the second image.
Abstract:
Traditionally, time-lapse videos are constructed from images captured at time intervals called "temporal points of interests" or "temporal POIs." Disclosed herein are systems and methods of constructing improved, motion-stabilized time-lapse videos using temporal points of interest and image similarity comparisons. According to some embodiments, a "burst" of images may be captured, centered around the aforementioned temporal points of interest. Then, each burst sequence of images may be analyzed, e.g., by performing an image similarity comparison between each image in the burst sequence and the image selected at the previous temporal point of interest. Selecting the image from a given burst that is most similar to the previous selected image, while minimizing the amount of motion with the previous selected image, allows the system to improve the quality of the resultant time-lapse video by discarding "outlier" or other undesirable images captured in the burst sequence and motion stabilizing the selected image.