Abstract:
A key mechanism including one or more butterfly hinges. Each butterfly hinge may include a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together. Additionally or alternatively, a key mechanism can include one or more half-butterfly hinges. Each half-butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. A hinged coupling mechanism couples one set of corresponding arms of the wings together, while the other set of corresponding arms are not coupled together.
Abstract:
Multi-functional keyboard assemblies include an array of keys formed from stacked component layers. A top portion of the key may be capable of travelling vertically with respect to a base of the key. The top portion can include a keycap and a circuitry module coupled to the keycap. The keys may be capable of receive at least two distinct types of inputs and/or receiving at least one type of input and providing at least one type of output. Such output may include use of one or more light sources, displays, and/or haptic feedback devices.
Abstract:
Keyboards include mechanisms that prevent and/or alleviate contaminant ingress. In some embodiments, a keyboard assembly includes a substrate, a key cap, a movement mechanism moveably coupling the key cap to the substrate, and a guard structure coupled to the key cap operable to direct contaminants away from the movement mechanism. In other embodiments, a keyboard includes a base; a web that defines apertures; keys moveably coupled to the base within the apertures; and a gasket coupled to the keys, the gasket fixed between the web and the base, operable to block passage of contaminants into the apertures.
Abstract:
A light-emitting assembly (201) positioned within a switch housing of a keyboard assembly for an electronic device is disclosed. The light-emitting assembly may include a phosphor structure (202), a transparent material positioned on opposing side surfaces (230, 232) of the phosphor structure, and an epoxy layer (210) formed over an entire back surface of the phosphor structure and the transparent material. The light-emitting assembly may also include a mask layer (218) formed over an entire top surface of: the phosphor structure, the transparent material, and the epoxy layer. The light-emitting assembly may further include a light source (220) positioned within the phosphor structure for emitting a light.
Abstract:
A key mechanism including one or more butterfly hinges. Each butterfly hinge may include a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together. Additionally or alternatively, a key mechanism can include one or more half-butterfly hinges. Each half-butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. A hinged coupling mechanism couples one set of corresponding arms of the wings together, while the other set of corresponding arms are not coupled together.
Abstract:
A key mechanism for an electronic device includes a switch housing and a hinged structure. As one example, the hinged structure can be a butterfly hinge. The switch housing includes switch pin retaining mechanisms on opposing sides of the switch housing. The hinged structure includes two separate wings that are positioned adjacent to each other such that a cavity is formed between the two wings. The two wings are coupled together by coupling elements. The wings of the hinged structure can include switch housing pins on each arm of the wing that extend into the cavity and couple to the switch pin retaining mechanisms in the switch housing. Various configurations of switch pin retaining mechanisms and switch housing pins can be used to attach the hinged structure to the switch housing.
Abstract:
A portable electronic device having several features is disclosed. The device can include a retention member that retains flexible circuits extending from a top portion to a bottom portion of the device, thereby allowing some components to be moved from a top portion of the device to a bottom portion. The device may include a cover plate can be secured with a display in the top portion to cover the retention member and other internal components. The device can include an omni-directional port designed to receive a connector different orientations and provide power to the device. The device can include a flexible keyboard having butterfly keycaps. The device can include an array of openings for an audio driver, with some of the array including through holes and blind holes. The device can also include a touch pad having a force feedback sensor and a haptic device.
Abstract:
An illumination structure for a key of a keyboard is used to uniformly illuminate the key and any glyphs that are present on the key. The illumination structure includes a light guide (310) having reflection features (325) positioned at various locations around the light guide that increase total internal reflection, illumination features (315) or light extraction features that are operative to illuminate the glyphs of the key, and light-directing features (330) to direct light emitted from the light emitting element (335) down one of more paths of the light guide (310).
Abstract:
An illuminated glass keycap having a glyph diffuser layer that may diffuse light through a glyph window opened in a background layer. The background layer may be opaque and the glyph window may be transparent. The keycap is adhered to a scissor mechanism positioned above electrical switch circuitry. Included within, below, or adjacent to the scissor mechanism may be one or more light sources positioned to emit light through the keycap, around the perimeter of the keycap, and/or through the background layer.