Abstract:
The present disclosure relates generally to implementing biometric authentication, including providing user interfaces for: a biometric enrollment process tutorial, aligning a biometric feature for enrollment, enrolling a biometric feature, providing hints during a biometric enrollment process, application-based biometric authentication, autofilling biometrically secured fields, unlocking a device using biometric authentication, retrying biometric authentication, managing transfers using biometric authentication, interstitial user interfaces during biometric authentication, preventing retrying biometric authentication, cached biometric authentication, autofilling fillable fields based on visibility criteria, automatic log-in using biometric authentication, retrying biometric authentication at a credential entry user interface, providing indications of error conditions during biometric authentication, providing indications about the biometric sensor during biometric authentication, and orienting the device to enroll a biometric feature.
Abstract:
The present disclosure relates generally to implementing biometric authentication, including providing user interfaces for: a biometric enrollment process tutorial, aligning a biometric feature for enrollment, enrolling a biometric feature, providing hints during a biometric enrollment process, application-based biometric authentication, autofilling biometrically secured fields, unlocking a device using biometric authentication, retrying biometric authentication, managing transfers using biometric authentication, interstitial user interfaces during biometric authentication, preventing retrying biometric authentication, cached biometric authentication, autofilling fillable fields based on visibility criteria, automatic log-in using biometric authentication, retrying biometric authentication at a credential entry user interface, providing indications of error conditions during biometric authentication, providing indications about the biometric sensor during biometric authentication, and orienting the device to enroll a biometric feature.
Abstract:
An electronic device: while displaying a user interface, detects an input sequence that includes detecting an increase in a characteristic intensity of a contact on a home button. In response, the device determines whether the increase is above a first intensity threshold and whether a change in the characteristic intensity proximate to a time when the characteristic intensity increases above the first intensity threshold has a first or a second value for an intensity-change metric. If the increase is above the threshold and the change has the first value, the device performs a first operation that changes the user interface displayed on the display; and generates a first discrete tactile output that corresponds to the increase. If the increase is above the threshold and the change has the second value, the device performs the first operation and generates a second discrete tactile output that corresponds to the increase.
Abstract:
An electronic device detects an occurrence of a first condition that triggers generation of a first user interface event associated with a tactile output, and displays one or more changes to the user interface. If the first user interface event corresponds to a first user interface event category, the device delays generating the first user interface event for at least a respective amount of time, and then displays the one or more changes to the user interface and generates the tactile output associated with the first user interface event. The display of the one or more changes to the user interface is synchronized with the generation of the tactile output associated with the first user interface event.
Abstract:
An electronic device: while displaying a user interface, detects an input sequence that includes detecting an increase in a characteristic intensity of a contact on a home button. In response, the device determines whether the increase is above a first intensity threshold and whether a change in the characteristic intensity proximate to a time when the characteristic intensity increases above the first intensity threshold has a first or a second value for an intensity-change metric. If the increase is above the threshold and the change has the first value, the device performs a first operation that changes the user interface displayed on the display; and generates a first discrete tactile output that corresponds to the increase. If the increase is above the threshold and the change has the second value, the device performs the first operation and generates a second discrete tactile output that corresponds to the increase.
Abstract:
An electronic device receives, at an application-independent module, from an application-specific module that is associated with a first application, information about an input directed to the user interface of the first application. An operation performed in the user interface of the first application in response to detecting the input is associated with a tactile output pattern specified by the application-specific module. The information about the input includes information indicating a magnitude of the operation performed in the user interface in response to detecting the input. The device generates a tactile output that corresponds to the operation performed in the user interface of the first application. The tactile output has the tactile output pattern specified by the application-specific module. The tactile output has an amplitude determined in accordance with the magnitude of the operation performed in the user interface of the first application in response to detecting the input.
Abstract:
An electronic device, while tactile output generators are in a low-power state, receives an indication that a user interaction has started. The device, if the indication meets tactile output generator preparation criteria, sets the tactile output generators to a low-latency state at a first time. Thereafter, the device, if the user interaction has reached a respective portion of the user interaction that is associated with a tactile output before a predefined amount of time since the first time has elapsed and the tactile output generators are still in the low-latency state, generates the tactile output using the tactile output generators with a reduced latency. If a tactile output has not been generated for at least the predefined amount of time since the first time, the device transitions the tactile output generators from the low-latency state to the low-power state.
Abstract:
An electronic device: while displaying a user interface, detects an input sequence that includes detecting an increase in a characteristic intensity of a contact on a home button. In response, the device determines whether the increase is above a first intensity threshold and whether a change in the characteristic intensity proximate to a time when the characteristic intensity increases above the first intensity threshold has a first or a second value for an intensity-change metric. If the increase is above the threshold and the change has the first value, the device performs a first operation that changes the user interface displayed on the display; and generates a first discrete tactile output that corresponds to the increase. If the increase is above the threshold and the change has the second value, the device performs the first operation and generates a second discrete tactile output that corresponds to the increase.