Abstract:
Apparatus and methods for estimating a location of a wireless device in communication with a wireless network, such as a UMTS network or an LTE/LTE-A network, based at least in part on WLAN/WPAN AP measurements and/or barometric measurements are disclosed. The wireless device responds to a location capability inquiry from the wireless network by providing a response that indicates the wireless device is configurable to estimate its location based on WLAN/WPAN AP and/or barometric measurements. The wireless network sends WLAN/WPAN AP and/or barometric reference information to the wireless device to assist in estimating its location. The wireless device measures one or more WLAN/WPAN APs, and the wireless device uses the WLAN/WPAN AP and/or barometric measurements to estimate its location. In some embodiments, GPS/GNSS information is used in conjunction with WLAN/WPAN AP and/or barometric measurements to estimate the location of the wireless device.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
The present disclosure describes a system, method, and computer program product embodiments for processing an A-MPSDU frame structure. An example system can include an interface circuit to combine a plurality of media access control (MAC) headers corresponding to a plurality of media access control service data units (MSDUs) into an aggregated MAC header. The aggregated MAC header can include length information for each of the MSDUs. The interface circuit can also insert the aggregated MAC header into a frame and transmit the frame using an antenna.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.
Abstract:
A single chip mobile wireless device capable of receiving and transmitting over one wireless network at a time maintains registration on two wireless communication networks that each use different communication protocols in parallel. Periodically, the mobile wireless device tunes one or more receivers from a first wireless network to a second wireless network in order to listen for paging messages addressed to the mobile wireless device from the second wireless network. The first wireless network suspends allocation of radio resources to the mobile wireless device based on receipt of a suspension message from the mobile wireless device, or based on knowledge of a paging cycle for mobile wireless device in the second wireless network, or based on detection of an out of synchronization condition with the mobile wireless device.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
A method and device for decoding packets received via a wireless local area network. The method performed by the device including receiving a packet, the packet including a signal portion and a data portion, verifying the signal portion of the packet is valid, determining if the packet is destined for the device, determining if the packet is a retransmission, combining, when the packet is a retransmission, information from the data portion of the packet with stored information from a previously received packet having a data portion that was not successfully decoded and attempting to decode the packet based at least in part on the information and stored information.
Abstract:
Electronic devices are be provided that contain wireless communication circuitry. The wireless communication circuitry includes radio-frequency transceiver circuitry coupled to first and second antennas. An electronic device sends network access probe signals to a base station in a wireless network. If the base station responds with a corresponding acknowledgement, the electronic device and base station establish a wireless communication link such as a cellular telephone link. In response to failure to receive the acknowledgement signal from the base station, the electronic device increases the transmit power of a successive network access probe signal. The electronic device switchs between use of the first and second antennas when transmitting the network access probe signals. The electronic device alternates between the first and second antennas or uses other antenna usage patterns.
Abstract:
A method for offloading data traffic from a cellular connection to a WLAN connection via a wireless P2P connection is disclosed. The method can include the wireless communication device accessing offloading coordination information from an offload coordination service server, including information about at least one neighboring wireless communication device being within sufficient proximity of the wireless communication device to establish a wireless P2P connection and having access to a WLAN access point; using the offloading coordination information to select a relay device from the at least one neighboring wireless communication device; establishing a wireless P2P connection with the relay device; and offloading data traffic from the cellular connection to the wireless P2P connection so that the data traffic is relayed from the relay device to a network via a WLAN access point accessible to the relay device.