Abstract:
One embodiment describes an electronic display that displays image frames with a first refresh rate or a second refresh rate, in which the second refresh rate is lower than the first refresh rate; a display driver that writes the image frames by applying voltage to a display panel; and a timing controller that receives first image data from an image source, in which the first image data describes a first image frame and a first desired refresh rate equal to the second fresh rate; and that instructs the display driver to apply a first set of voltage polarities to the display panel to display first image frame at the first refresh rate and to apply a second set of voltage polarities to the display the first image frame at the second refresh rate when polarity of inversion imbalance accumulated is equal to polarity of the first set of voltage polarities.
Abstract:
Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
Abstract:
Methods and devices for reducing the power consumption of a frame buffer (88) and timing controller (78) of an electronic display (18) are provided. By way of example, a method of operating an electronic display (18) includes receiving image data from a processor (12) of the electronic display (18), storing the image data to a buffer (88) of the electronic display (18), reading the image data from the buffer (88) to supply the image data to a column driver (64) of the electronic display (18), determining whether an amount of image data stored in buffer (88) is less than a threshold, and switching from reading the image data from the buffer (88) to reading the image data directly from the processor (12) when the amount of image data stored in buffer (88) is less than the threshold.
Abstract:
Systems, methods, and device are provided to provide inversion techniques for dynamic variable refresh rate electronic displays. One embodiment of the present disclosure describes An electronic display including a display panel that display images with varying refresh rates and a timing controller that receives image data from an image source, determines a counter value, and instructs a driver in the electronic display to apply a voltage to the display panel to write an image on the display panel, in which a negative voltage is applied when the counter value is positive and a positive voltage is applied when the counter value is less than or equal to zero. Additionally, the timing controller update the counter value based at least in part on duration the image is displayed on the display panel, wherein the counter value increases when the voltage is positive and decreases when the voltage is negative.
Abstract:
Methods and devices for reducing the power consumption of a frame buffer and timing controller of an electronic display are provided. By way of example, a method of operating an electronic display includes receiving image data from a processor of the electronic display, storing the image data to a buffer of the electronic display, reading the image data from the buffer to supply the image data to a column driver of the electronic display, determining whether an amount of image data stored in buffer is less than a threshold, and switching from reading the image data from the buffer to reading the image data directly from the processor when the amount of image data stored in buffer is less than the threshold.
Abstract:
Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
Abstract:
One embodiment describes an electronic display that displays image frames with a first refresh rate or a second refresh rate, in which the second refresh rate is lower than the first refresh rate; a display driver that writes the image frames by applying voltage to a display panel; and a timing controller that receives first image data from an image source, in which the first image data describes a first image frame and a first desired refresh rate equal to the second fresh rate; and that instructs the display driver to apply a first set of voltage polarities to the display panel to display first image frame at the first refresh rate and to apply a second set of voltage polarities to the display the first image frame at the second refresh rate when polarity of inversion imbalance accumulated is equal to polarity of the first set of voltage polarities.
Abstract:
Systems, methods, and device are provided to provide inversion techniques for dynamic variable refresh rate electronic displays. One embodiment of the present disclosure describes An electronic display including a display panel that display images with varying refresh rates and a timing controller that receives image data from an image source, determines a counter value, and instructs a driver in the electronic display to apply a voltage to the display panel to write an image on the display panel, in which a negative voltage is applied when the counter value is positive and a positive voltage is applied when the counter value is less than or equal to zero. Additionally, the timing controller update the counter value based at least in part on duration the image is displayed on the display panel, wherein the counter value increases when the voltage is positive and decreases when the voltage is negative.