Abstract:
Methods and devices for reducing the power consumption of a frame buffer (88) and timing controller (78) of an electronic display (18) are provided. By way of example, a method of operating an electronic display (18) includes receiving image data from a processor (12) of the electronic display (18), storing the image data to a buffer (88) of the electronic display (18), reading the image data from the buffer (88) to supply the image data to a column driver (64) of the electronic display (18), determining whether an amount of image data stored in buffer (88) is less than a threshold, and switching from reading the image data from the buffer (88) to reading the image data directly from the processor (12) when the amount of image data stored in buffer (88) is less than the threshold.
Abstract:
Systems, methods, and device are provided to provide inversion techniques for dynamic variable refresh rate electronic displays. One embodiment of the present disclosure describes An electronic display including a display panel that display images with varying refresh rates and a timing controller that receives image data from an image source, determines a counter value, and instructs a driver in the electronic display to apply a voltage to the display panel to write an image on the display panel, in which a negative voltage is applied when the counter value is positive and a positive voltage is applied when the counter value is less than or equal to zero. Additionally, the timing controller update the counter value based at least in part on duration the image is displayed on the display panel, wherein the counter value increases when the voltage is positive and decreases when the voltage is negative.
Abstract:
Methods and devices for reducing the power consumption of a frame buffer and timing controller of an electronic display are provided. By way of example, a method of operating an electronic display includes receiving image data from a processor of the electronic display, storing the image data to a buffer of the electronic display, reading the image data from the buffer to supply the image data to a column driver of the electronic display, determining whether an amount of image data stored in buffer is less than a threshold, and switching from reading the image data from the buffer to reading the image data directly from the processor when the amount of image data stored in buffer is less than the threshold.
Abstract:
Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
Abstract:
A data processing system can store a long-term history of pixel luminance values in a secure memory and use those values to create burn-in compensation values that are used to mitigate burn-in effect on a display. The long-term history can be updated over time with new, accumulated pixel luminance values.
Abstract:
Devices and methods for reducing and/or substantially eliminating pixel charge imbalance due to variable refresh rates are provided. By way of example, a method includes providing a first frame of image data via a processor to a plurality of pixels of the display during a first frame period corresponding to a first refresh rate, and providing a second frame of image data to the plurality of pixels of the display during a second frame period corresponding to a second refresh rate. The method further includes dividing the first frame period into a first frame sub-period and a second frame sub-period, and driving the plurality of pixels of the display with the first frame of image data during the first frame sub-period and the second frame sub-period.
Abstract:
One embodiment describes an electronic display that displays image frames with a first refresh rate or a second refresh rate, in which the second refresh rate is lower than the first refresh rate; a display driver that writes the image frames by applying voltage to a display panel; and a timing controller that receives first image data from an image source, in which the first image data describes a first image frame and a first desired refresh rate equal to the second fresh rate; and that instructs the display driver to apply a first set of voltage polarities to the display panel to display first image frame at the first refresh rate and to apply a second set of voltage polarities to the display the first image frame at the second refresh rate when polarity of inversion imbalance accumulated is equal to polarity of the first set of voltage polarities.
Abstract:
Systems, apparatuses, and methods for implementing a timestamp based display update mechanism. A display control unit includes a timestamp queue for storing timestamps, wherein each timestamp indicates when a corresponding frame configuration set should be fetched from memory. At pre-defined intervals (810), the display control unit may compare the timestamp of the topmost entry of the timestamp queue to a global timer value (815). If the timestamp is earlier than the global timer value (820), the display control unit may pop the timestamp entry and fetch the frame next configuration set from memory (825). The display control unit may then apply the updates of the frame configuration set to its pixel processing elements (835). After applying the updates, the display control unit may fetch and process the source pixel data and then drive the pixels of the next frame to the display (840).
Abstract:
Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.