Abstract:
A layered coating for a sapphire component is described herein. The sapphire component comprises one or more layers of alumina adhered to the surface of a sapphire member. At least the first layer of alumina adheres to the surface of the sapphire member filling all defects in the surface forming a pristine new layer that also provides isolation from damage.
Abstract:
Systems and methods for strengthening a sapphire part are described herein. One method may take the form of orienting a first surface of a sapphire member relative to an ion implantation device, selecting an ion implantation concentration and directing ions at the first surface of the sapphire member. The ions are embedded under the first surface to create compressive stress in the sapphire surface.
Abstract:
Embodiments relates to a hook side fastener having hooks and a loop side fastener having loops. The hooks and/or loops are made of bulk solidifying amorphous metal alloy. Other embodiments relate to methods of making and using the hook side and loop side fasteners.
Abstract:
An electronic device may include electrical components and other components mounted within an interior of a housing. The device may have a display on a front face of the device and may have a glass layer that forms part of the housing on a rear face of the device. The glass layer may be provided with regions having different appearances. The regions may be textured, may have coatings such as thin-film interference filter coatings formed from stacks of dielectric material having alternating indices of refraction, may have metal coating layers, and/or may have ink coating layers. Textured surfaces may be formed on thin glass layers and polymer films that are coupled to the glass layer. A glass layer may be formed from a pair of coupled glass layers. The coupled layers may have one or more recesses or other structures to visually distinguish different regions of the glass layer.
Abstract:
The described embodiments relate generally to cosmetic surfaces and associated treatments to alter a color of cosmetic surfaces. According to one embodiment, cosmetic ink configured to be applied to a cosmetic surface can include a suspension matrix configured to suspend a number of small particles in the suspension matrix. Each of the small particles of the suspension matrix is within a desired overall diameter to cause a user to perceive a desired color due to plasmon resonance of the small particles.
Abstract:
A method comprising: constructing a master curve plot comprising a plurality of reference curves, each reference curve representing a relationship between volume and temperature for one of a plurality of reference alloy samples having a chemical composition and various predetermined degrees of crystallinity; for an alloy specimen having the chemical composition and an unknown degree of crystallinity, obtaining a curve representing a relationship between volume and temperature thereof; and determining the unknown degree of crystallinity by comparing the curve to the master curve plot.
Abstract:
Disclosed is an injection molding system including a first plunger rod and a second plunger rod configured to move or transport molten material from a melt zone and into a mold. The first and second plunger rods are configured to control and contain the molten material therebetween while moving. The second plunger rod can also be positioned relative to the mold to apply pressure on one side of the mold as the first plunger rod pushes molten material into the mold on an opposite side to force the material into the mold cavity. The second plunger rod can further be used to eject a molded (bulk amorphous) object from the mold. The rods can move in a longitudinal direction (e.g., horizontally) between the melt zone and mold along a longitudinal axis.
Abstract:
A housing for an electronic device, including an aluminum layer enclosing a volume that includes a radio-frequency (RF) antenna is provided. The housing includes a window aligned with the RF antenna; the window including a non-conductive material filling a cavity in the aluminum layer; and a thin aluminum oxide layer adjacent to the aluminum layer and to the non-conductive material; wherein the non-conductive material and the thin aluminum oxide layer form an RF-transparent path through the window. A housing for an electronic device including an integrated RF-antenna is also provided. A method of manufacturing a housing for an electronic device as described above is provided.
Abstract:
Techniques or processes for providing markings on products are disclosed. In one embodiment, the products have housings and the markings are to be provided on the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on the outer housing surface so as to be visible from the outside of the housing. The markings are able to be interferometric colors and/or black.
Abstract:
A housing (102) or enclosure for an electronic device (100) is formed from a shell and a chassis positioned along an interior of the shell. The shell may be formed from a hard or cosmetic material and the chassis may be formed from a machinable material. The chassis may define one or more machined surfaces that are configured to receive or mount a component (106, 108) of the electronic device.