Abstract:
A system and a method for manufacturing a sapphire part. A sapphire substrate 300 is obtained for performing a laser cutting operation. The sapphire substrate is cut along a cut profile 302 using a laser 402 and a first gas medium supplied by a gas delivery device 404. The first gas medium is substantially comprised of an inert gas. The sapphire substrate is then irradiated at or near the cut profile using the laser and a second gas medium. The second gas medium is different than the first gas medium comprising oxygen.
Abstract:
A method of manufacturing a housing of an electronic device includes determining a sintering profile configured to produce a selected color at a selected depth within a wall of the housing, sintering a ceramic housing precursor in accordance with the determined sintering profile, thereby forming the housing, and removing material from the housing up to the selected depth.
Abstract:
A cover for an electronic device (100) and methods of forming a cover (112) is disclosed. The electronic device (100) may include a housing (102), and a cover (112) coupled to the housing (102). The cover (112) may have an inner surface (124) having at least one of an intermediate polish and a final polish, a groove (128) formed on the inner surface (124), and an outer surface (126) positioned opposite the inner surface (124). The outer surface (126) may have at least one of the intermediate polish and the final polish. The cover (112) may also have a rounded perimeter portion (134) formed between the inner surface (124) and the outer surface (126). The rounded perimeter portion (134) may be positioned adjacent the groove (128). The method for forming the cover (112) may include performing a first polishing process on the sapphire component using a polishing tool, and performing a second polishing process on the groove (128) of the sapphire component forming the cover (112) using blasting media (142).
Abstract:
An electronic device may include a biometric sensing device that has a sensing area, and a substrate positioned above the sensing area and/or the biometric sensing device. The substrate can include vias that are formed through at least a portion of the substrate. The vias can be positioned at least above the sensing area of the biometric sensing device. The vias may be filled with a conductive material or a dielectric material. Alternatively, some vias can be filled with a conductive material while other vias are filled with a non-conductive or dielectric material.
Abstract:
A strengthened film for a substrate such as a glass panel is provided. The strengthened film may be formed by implanting sodium in the film, and then performing an exchange through which the sodium is replaced by potassium. The film may be an anti-reflective coating. Related assemblies and methods are also provided.
Abstract:
Asymmetrically strengthened glass articles, methods for producing the same, and use of the articles in portable electronic device is disclosed. Using a budgeted amount of compressive stress and tensile stress, asymmetric chemical strengthening is optimized for the utility of a glass article. In some aspects, the strengthened glass article can be designed for reduced damage, or damage propagation, when dropped.
Abstract:
A property-enhanced cover sheet, and methods for forming a property-enhanced cover sheet, for a portable electronic device are disclosed. A property-enhanced cover sheet is formed by thermoforming a glass sheet into a specified contour shape while modifying one or more properties of the glass. Other property-enhanced sheets can be formed by layering two or more glass sheets having different material properties, and then thermoforming the layered sheets into a required contour shape. Property enhancement for a cover sheet includes, hardness, scratch resistance, strength, elasticity, texture and the like.
Abstract:
An electronic device including a signal transmission system. The electronic device may include a housing, and a cover coupled to the housing and defining a groove formed in the cover. The electronic device may also include a signal transmission system positioned within the housing. The signal transmission system may include an antenna at least partially received within the groove formed in the cover. The antenna may have an antenna body, and a contact pad in electrical communication with the antenna body. The signal transmission system may also have a flexible member positioned adjacent the antenna body. The flexible member may contact the contact pad of the antenna.
Abstract:
A ceramic material having an electronic component embedded therein, and more particularly to a sapphire surface having an electrically energized component embedded within. In some embodiments, the sapphire surface may take the form of a portion of a housing for an electronic device. Since sapphire may be substantially transparent, it may form a cover glass for a display within or forming part of the electronic device, as one example. The cover glass may be bonded, affixed, or otherwise attached to a remainder of the housing, thereby forming an enclosure for the electronic device.