Abstract:
A display architecture providing independent adjustment of gamma with respect to each color channel of a display is provided. In one embodiment, gamma adjustment circuitry may utilize separate resistor strings for each color channel of the display. Gamma adjustment voltage taps for each resistor string may each be coupled to a respective switching logic block that includes a plurality of switches, each of which may be coupled to different respective locations of the resistor string. Based upon a gamma correction profile defining optimal gamma adjustment points for a particular color channel based at least partially upon its transmittance sensitivity characteristics, appropriate control signals may be provided to each of the switching logic blocks to facilitate the connection of the gamma adjustment voltage taps to desired adjustment points on a respective resistor string in order to optimize gamma correction and provide for increased accuracy in color output.
Abstract:
A display module and system applications including a display module are described. The display module may include a display substrate including a front surface, a back surface, and a display area on the front surface. A plurality of interconnects extend through the display substrate from the front surface to the back surface. An array of light emitting diodes (LEDs) are in the display area and electrically connected with the plurality of interconnects, and one or more driver circuits are on the back surface of the display substrate. Exemplary system applications include wearable, rollable, and foldable displays.
Abstract:
Methods and apparatuses relating to controlling an emission of a display panel. In one embodiment, a display driver hardware circuit includes row selection logic to select a number of rows in an emission group of a display panel, wherein the number of rows is adjustable from a single row to a full panel of the display panel, column selection logic to select a number of columns in the emission group of the display panel, wherein the number of columns is adjustable from a single column to the full panel of the display panel, and emission logic to select a number of pulses per data frame to be displayed, wherein the number of pulses per data frame is adjustable from one to a plurality and a pulse length is adjustable from a continuous duty cycle to a non-continuous duty cycle.
Abstract:
Display structures and methods of assembly are described. In an embodiment, a display structure includes a display panel including a pattern of trenches extending at least partially through a backplane of the display panel, without extending past a matrix of LEDs in an overlying emission layer stack. The plurality of trenches can be formed in 2D to facilitate bending of the display panel into a 3D film curvature.
Abstract:
Display panel redundancy schemes and redundancy building blocks are described. In an embodiment, pixel driver chips are connected to both primary and redundant strings of LEDs within a local passive matrix, and driver terminal switches within the pixel driver chip are used to select either the primary or redundant strings of LEDs.
Abstract:
A display architecture providing independent adjustment of gamma with respect to each color channel of a display is provided. In one embodiment, gamma adjustment circuitry may utilize separate resistor strings for each color channel of the display. Gamma adjustment voltage taps for each resistor string may each be coupled to a respective switching logic block that includes a plurality of switches, each of which may be coupled to different respective locations of the resistor string. Based upon a gamma correction profile defining optimal gamma adjustment points for a particular color channel based at least partially upon its transmittance sensitivity characteristics, appropriate control signals may be provided to each of the switching logic blocks to facilitate the connection of the gamma adjustment voltage taps to desired adjustment points on a respective resistor string in order to optimize gamma correction and provide for increased accuracy in color output.
Abstract:
Display panel redundancy schemes and methods of operation are described. In an embodiment, and display panel includes an array of drivers (e.g. microdrivers), each of which including multiple portions to independently receive control and pixel bits. In an embodiment, each driver portion is to control a group of redundant emission elements.