Abstract:
A system and method for retaining enclosure components of an electronic device that can experience a range of dynamic forces is disclosed. The electronic device includes a cover component and a housing component. The electronic device also contains a retention system that includes a spring clip and a compressible layer for retaining a portion of the cover component to the housing component. The retention system provides a variable retention force that resists the separation of the cover and housing components. If the electronic device experiences a force that is applied abruptly, such as in the case of an unintentional drop event, the variable retention force is high, increasing the retention between the cover and housing components. If the electronic device experiences a slower and gradual force, such as in the case of intentional disassembly, the variable retention force is low, allowing the disassembly of the electronic device.
Abstract:
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
Abstract:
This application relates to various button related embodiments for use with a portable electronic device. In some embodiments, a snap clip can be integrated with a button bracket to save space where two separate brackets would take up too much space in the portable electronic device. In other embodiments, a tactile switch can be waterproofed by welding a polymeric layer atop a tactile switch assembly. In this way water can be prevented from contacting moisture sensitive components of the tactile switch assembly. The weld joining the polymeric layer to the tactile switch can include at least one gap to trapped gas surrounding the tactile switch assembly to enter and exit during heat excursions caused by various operating and/or assembly operations.
Abstract:
An electronic device having a lens and a lens retaining member is disclosed. The lens and the lens retaining member may both be molded in a single mold cavity. However, the lens includes a first material that is clear and translucent, while the lens retaining member includes a second material that is opaque. The lens retaining member may include an alignment such that the lens and lens retaining member, when secured to a flexible circuit, may self-align with a window. The window allows a light source to emit light while the lens retaining member blocks or reflects light. In another embodiment, a container having a first member and a second member may be positioned around a camera module. The container may act as an EMI shield for the camera module.
Abstract:
The embodiments discussed herein relate to electrical switches. Specifically, the embodiments include a pivoting switch that translates a rotational movement of a portion of the pivoting switch into a linear movement for toggling a button. The pivoting switch can include a pin that extends into a bracket in order to define and limit a rotational movement of the pivoting switch. The pivoting switch can further include a switch cavity that can force a knob of the button to move with the pivoting switch. The embodiments can further include an electrical switch having a welded cover plate. The welded cover plate can include arms that extend across and are welded to one or more surfaces of the electrical switch. The welded cover plate provides a more secure retaining mechanism for the electrical switch in order to reduce bending of certain portions of the electrical switch when the electrical switch is toggled.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3 dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.