Abstract:
Disclosed is a method of monitoring a focus parameter during a lithographic process. The method comprises acquiring first and second measurements of, respectively first and second targets, wherein the first and second targets have been exposed with a relative best focus offset. The method then comprises determining the focus parameter from first and second measurements. Also disclosed are corresponding measurement and lithographic apparatuses, a computer program and a method of manufacturing devices.
Abstract:
A method of identifying one or more dominant asymmetry modes relating to asymmetry in an alignment mark, the method includes obtaining alignment data relating to measurement of alignment marks on at least one substrate using a plurality of alignment conditions; identifying one or more dominant orthogonal components of the alignment data, the one or more dominant orthogonal components including a number of orthogonal components which together sufficiently describes variance in the alignment data; and determining an asymmetry mode as dominant if it corresponds to an expected asymmetry mode shape which best matches one of the one or more dominant orthogonal components. Alternatively, the method includes, for each known asymmetric mode: determining a sensitivity metric; and determining an asymmetry mode as dominant if the sensitivity metric is above a sensitivity threshold.
Abstract:
Disclosed herein is a method comprising: obtaining a plurality of measurement results from a pattern on a substrate respectively using a plurality of substrate measurement recipes, the substrate processed by a lithography process; reconstruct, using a computer, the pattern using the plurality of measurement results, to obtain a reconstructed pattern.
Abstract:
A measurement apparatus and method for determining a substrate grid describing a deformation of a substrate prior to exposure of the substrate in a lithographic apparatus configured to fabricate one or more features on the substrate. Position data for a plurality of first features and/or a plurality of second features on the substrate is obtained. Asymmetry data for at least a feature of the plurality of first features and/or the plurality of second features is obtained. The substrate grid based on the position data and the asymmetry data is determined. The substrate grid and asymmetry data are passed to the lithographic apparatus for controlling at least part of an exposure process to fabricate one or more features on the substrate.
Abstract:
Methods, computer program products and apparatuses for optimizing design rules for producing a mask are disclosed, while keeping the optical conditions (including but not limited to illumination shape, projection optics numerical aperture (NA) etc.) fixed. A cross-correlation function is created by multiplying the diffraction order functions of the mask patterns with the eigenfunctions from singular value decomposition (SVD) of a TCC matrix. The diffraction order functions are calculated for the original design rule set, i.e., using the unperturbed condition. ILS is calculated at an edge of a calculated image of a critical polygon using the cross-correlation results and using translation properties of a Fourier transform. Once an optimum separation is calculated, it is incorporated into the design rule to optimize the mask layout for improved ILS throughout the mask.
Abstract:
A method of adjusting a metrology apparatus, the method including: spatially dividing an intensity distribution of a pupil plane of the metrology apparatus into a plurality of pixels; and reducing an effect of a structural asymmetry in a target on a measurement by the metrology apparatus on the target, by adjusting intensities of the plurality of pixels.
Abstract:
Disclosed is a patterning device configured to pattern a beam of radiation according to a desired pattern during a lithographic process. The patterning device comprises first features configured to form a first target on a substrate during the lithographic process and second features configured to form a second target on the substrate during the lithographic process. The second features are taller, in a direction transverse to the plane of the first and second targets, than the first features, such that the first and second targets have a relative best focus offset.
Abstract:
A process of calibrating a model, the process including: obtaining training data including: scattered radiation information from a plurality of structures, individual portions of the scattered radiation information being associated with respective process conditions being characteristics of a patterning process of the individual structures; and calibrating a model with the training data by determining a ratio relating a change in one of the process characteristics to a corresponding change in scattered radiation information.
Abstract:
A structure of a semiconductor device with a sub-segmented grating structure as a metrology mark and a method for configuring the metrology mark. The method for configuring a metrology mark may be used in a lithography process. The method may include determining an initial characteristic function of an initial metrology mark disposed within a layer stack. The method also includes perturbing one or more variables of the plurality of subsegments of the metrology mark (e.g., pitch, duty cycle, and/or line width of the plurality of subsegments) and further perturbing a thickness of one or more layers within the layer stack. The method further includes iteratively performing the perturbations until a minimized characteristic function of an initial metrology mark is determined to set a configuration for the plurality of subsegments.
Abstract:
A method of adjusting a metrology apparatus, the method including: spatially dividing an intensity distribution of a pupil plane of the metrology apparatus into a plurality of pixels; and reducing an effect of a structural asymmetry in a target on a measurement by the metrology apparatus on the target, by adjusting intensities of the plurality of pixels.