Abstract:
A system for detecting and avoiding interference with radar signals in wireless network devices is described. The receiver circuit of the device receives incoming 5 GHz traffic. Such traffic could comprise both WLAN traffic as well as radar signals from radar systems. The incoming packets are treated as an input event, and are screened to be examined as radar pulses. Radar pulses are identified using the length of the detected event. The radar pulses are examined using frequency domain analysis, and the packet train is examined to find gaps between radar pulses. The periodic nature of the packet is determined using frequency domain and time domain analysis to calculate the period of the pulse train. Particular intervals within the pulse train are analyzed using threshold numbers of periodic pulses within the interval and threshold power levels for the pulses. The calculated period information is used to identify the radar source and screen non-radar traffic.
Abstract:
Systems and methods to adapt the rate at which acknowledgements are transmitted between nodes in a wireless communication system are presented. The systems and methods enable an acknowledgement based wireless communication system to extend its range and capacity by adapting a rate at which acknowledgement packets are transmitted between nodes to match the available transmit power of the acknowledge transmitting node and the propagation environment of the wireless communication system.
Abstract:
A circular filtering system that prevents the problem of inter-symbol interference. The circular filtering system utilizes a buffer memory to store samples of a given symbol and provide only these samples to a linear filter such that the output of the filter, for any given symbol is formed by filtering only samples of that input symbol. Each symbol being filtered independent of other symbols hence eliminating inter-symbol interference caused by filtering. Where symbols are tolerant to a fixed phase shift for each symbol, the circular filtering system can be simplified by reducing the size of the buffer and introducing a multiplexer.
Abstract:
An antenna switch diversity algorithm, and systems and methods to provide antenna diversity by implementing the algorithm in, for example, an IEEE 802.11a compliant environment, are presented. In accordance with the algorithm, one antenna of at least two antennas is designated as a default antenna at a communications device that sends and receives transmit and receive packets. The default antenna designation is changed depending on long-term and short-term learning processes implemented in, for example, software and hardware. The long-term and short-term learning processes analyze packet transmission and reception results of the antennas. The antenna switch diversity algorithm is applicable to multiple antennas.
Abstract:
A multi-carrier communication system such as an OFDM or DMT system has nodes which are allowed to dynamically change their receive and transmit symbol rates, and the number of carriers within their signals. Changing of the symbol rate is done by changing the clocking frequency of the nodes' iFFT and FFT processors, as well as their serializers and deserializers. The nodes have several ways of dynamically changing the number of earners used. The selection of symbol rate and number of earners can be optimized for a given channel based on explicit channel measurements, a priori knowledge of the channel, or past experience. Provision is made for accommodating legacy nodes that may have constraints in symbol rate or the number of carriers they can support. The receiver can determine the correct symbol rate and number of earners through a priori knowledge, a first exchange of packets in a base mode that all nodes can understand, or an indication in the header of the data packet which is transmitted in a base mode of operation that all nodes can understand.
Abstract:
Systems and methods to adapt the rate at which acknowledgements are transmitted between nodes in a wireless communication system are presented. The systems and methods enable an acknowledgement based wireless communication system to extend its range and capacity by adapting a rate at which acknowledgement packets are transmitted between nodes to match the available transmit power of the acknowledge transmitting node and the propagation environment of the wireless communication system.
Abstract:
A multi-carrier communication system such as an OFDM or DMT system has nodes which are allowed to dynamically change their receive and transmit symbol rates, and the number of carriers within their signals. Changing of the symbol rate is done by changing the clocking frequency of the nodes' iFFT and FFT processors, as well as their serializers and deserializers. The nodes have several ways of dynamically changing the number of carriers used. The selection of symbol rate and number of carriers can be optimized for a given channel based on explicit channel measurements, a priori knowledge of the channel, or past experience. Provision is made for accommodating legacy nodes that may have constraints in symbol rate or the number of carriers they can support. The receiver can determine the correct symbol rate and number of carriers through a priori knowledge, a first exchange of packets in a base mode that all nodes can understand, or an indication in the header of the data packet which is transmitted in a base mode of operation that all nodes can understand.