Abstract:
A key-caching system retrieves actively used keys from a relatively fast cache memory for fast processing of wireless communications. Additional keys are stored in relatively slow system memory that has high storage capacity. As keys become needed for active use, the keys are retrieved from the system memory and stored in the cache memory. By using active memory for keys actively being used, system performance is enhanced. By using system memory for keys not being used, a greater number of keys are available for transfer to the cache and subsequent active use.
Abstract:
A Hardware MAC (Media Access Control) unit implements time-critical functions according the 802.11 standard for telecommunications, thereby enhancing system performance. The MAC layer includes three sub-layers: MLME (MAC Sublayer Management Entity), which connects the MAC unit with the host CPU, FTM (Frame Transition Manager), which connects the MAC unit with the network, and FLPM (Frame Level Protocol Manager), which internally connects the MLME sub-layer with the FTM sub-layer. In particular, the FLPM manager includes time-critical and non-time-critical functions that are customarily implemented in software on the MAC by a MAC CPU (Central Processing Unit). The hardware MAC implements time-critical FLPM functions in hardware on the MAC and implements non-time-critical FLPM functions in software on the host CPU so that requirements for processing software on the MAC preferably may be altogether eliminated or alternatively may be substantially reduced.
Abstract:
A key-caching system retrieves actively used keys from a relatively fast cac he memory for fast processing of wireless communications. Additional keys are stored in relatively slow system memory that has high storage capacity. As keys become needed for active use, the keys are retrieve from the system memory and stored in the cache memory. By using active memory for keys actively being used, system performance is enhanced. By using system memory for keys not being used, a greater number of keys are available for transfer to the cache and subsequent active use.
Abstract:
An embodiment of the present invention provides an automatic gain control system for a wireless receiver that quickly differentiates desired in-band signals from high power out-of-band signals that overlap into the target band. The system measures power before and after passing a received signal through a pair of finite impulse response filteres (205-IP), (210-IP), (205-Q), (210-Q) and (220) that largely restrict the signal's power to that which is in-band. By comprising the in-band energy of the received signal after filtering to the total signal energy prior to filtering (215), it is possible to determine whether a new in-band signal has arrived. The presence of this new in-band signal is then verified by a multi-threshold comparison of the normalized self-correlation (225) to verify the presence of a new, desired in-band signal.
Abstract:
A method of queue management includes: adding entries having a first priority to a first software queue (34); adding entries having a second priority to a second software queue (36); reading entries from the first software queue to a physical queue; at a threshold time, flushing entries from the physical queue (42); at a threshold time, flushing entries from the physical queue, after the act of flushing the physical queue, reading entries from the second software queue to the physical queue until a termination criterion is satisfied; after the termination criterion is satisfied, reading entries from the first software queue to the physical queue; and transmitting entries from the physical queue to a network (44).
Abstract:
A Hardware MAC (Media Access Control) unit implements time-critical functions according the 802.11 standard for telecommunications, thereby enhancing system performance. The MAC layer includes three sub-layers: MLME (MAC Sublayer Management Entity), which connects the MAC unit with the host CPU, FTM (Frame Transition Manager), which connects the MAC unit with the network, and FLPM (Frame Level Protocol Manager), which internally connects the MLME sub-layer with the FTM sub-layer. In particular, the FLPM manager includes time-critical and non-time-critical functions that are customarily implemented in software on the MAC by a MAC CPU (Central Processing Unit). The hardware MAC implements time-critical FLPM functions in hardware on the MAC and implements non-time-critical FLPM functions in software on the host CPU so that requirements for processing software on the MAC preferably may be altogether eliminated or alternatively may be substantially reduced.
Abstract:
A key-caching system retrieves actively used keys from a relatively fast cache memory for fast processing of wireless communications. Additional keys are stored in relatively slow system memory that has high storage capacity. As keys become needed for active use, the keys are retrieve from the system memory and stored in the cache memory. By using active memory for keys actively being used, system performance is enhanced. By using system memory for keys not being used, a greater number of keys are available for transfer to the cache and subsequent active use.
Abstract:
In a wireless local area network (WLAN), receiving or transmitting signals having multiple modulation schemes can require the use of multiple clock rates. Providing these multiple clock rates significantly increases silicon area and power consumption, both of which are highly undesirably in a wireless device. A sequencing interpolator can advantageously reduce the number of clock rates by receiving signals at a first rate and outputting signals at a second rate. The sequencing interpolator can include a multiplexer network that selectively determines which coefficients are applied to certain signals. Coefficients are chosen to ensure that an error in a frequency domain is within a given tolerance. The multiplexer network can be controlled by a counter value. At a predetermined count, the interpolated output signal is discarded and the counter is reset.
Abstract:
A Hardware MAC (Media Access Control) unit implements time-critical functions according the 802.11 standard for telecommunications, thereby enhancing system performance. The MAC layer includes three sub-layers: MLME (MAC Sublayer Management Entity), which connects the MAC unit with the host CPU, FTM (Frame Transition Manager), which connects the MAC unit with the network, and FLPM (Frame Level Protocol Manager), which internally connects the MLME sub-layer with the FTM sub-layer. In particular, the FLPM manager includes time-critical and non-time-critical functions that are customarily implemented in software on the MAC by a MAC CPU (Central Processing Unit). The hardware MAC implements time-critical FLPM functions in hardware on the MAC and implements non-time-critical FLPM functions in software on the host CPU so that requirements for processing software on the MAC preferably may be altogether eliminated or alternatively may be substantially reduced.