Abstract:
An optical component is adapted for pick-and-place-style installation on an optical submount (100) or bench and compatible with a chuck of a bonder (200) that picks-up the optical component, places it on the optical bench, and then typically solder bonds the optical component to the bench. In the current implementation, this optical component comprises an optical element (104), such as an optical fiber, lens, or MOEMS device, that is attached to a plastically deformable mounting structure. The optical component has a bench-attach surface (152) that is used to bond the optical component to an optical bench. Further, the optical component has a bonder chuck engagement surface (154) to which a bonder chuck attaches to manipulate the optical component, such as install it, on the optical bench.
Abstract:
An optical component is adapted for pick-and-place-style installation on an optical submount or bench and compatible with a chuck of a bonder that picks-up the optical component, places it on the optical bench, and then typically solder bonds the optical component to the bench. In the current implementation, this optical component comprises an optical element, such as an optical fiber, lens, or MOEMS device, that is attached to a plastically deformable mounting structure. The optical component has a bench-attach surface that is used to bond the optical component to an optical bench. Further, the optical component has a bonder chuck engagement surface to which a bonder chuck attaches to manipulate the optical component, such as install it, on the optical bench.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore (113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after the components have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This movements will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore (113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after the components have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This movements will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.