Abstract:
A vehicle anti-theft system in the form of a mechanically interengagable electronic key and lock includes stored key and vehicle identifiers in both the key and in the lock. A random number is generated in the lock each time the vehicle ignition switch is closed and that random number is used to encode one of the identifiers for transmission to the key. The key uses the corresponding stored identifier to recover the random number. The other stored identifier is then encoded using the recovered random number and the encoded other identifier is returned to the lock. The lock uses the generated random number to recover the second identifier for comparison to its stored value. If the comparison fails, vehicle operation is prevented. The system may effect several trials, each using a new random number before refusing further attempts. The lock electronics is preferably disposed in the vehicle fuel tank and controls operation of the vehicle fuel pump.
Abstract:
A filter device and technique are described which rely on absorption rather than adsorption for the removal of gas phase contaminants. A filter media (49) is composed of wicking fibers which are impregnated with any of a variety of liquid phase absorbing systems made from the combination of a carrier liquid and soluble complexing/degrading agent or agents. The wicking fibers may be connected to an external reservoir (37) which can be used to supply fresh absorbing fluid to the filter media giving them a potentially inexhaustible capacity. The filter media may be made from any of a variety of fibers which can rapidly transport a liquid phase by the nature of either their geometry or their chemical composition. Geometries may include multilobal cross-sectional configurations, porous hollow fibers, porous or striated fibers or tightly bundled microfibers, all of which exhibit the property of wicking fluid from an external source.
Abstract:
A vehicle anti-theft system in the form of a mechanically interengagable electronic key and lock includes stored key and vehicle identifiers in both the key and in the lock. A random number is generated in the lock each time the vehicle ignition switch is closed and that random number is used to encode one of the identifiers for transmission to the key. The key uses the corresponding stored identifier to recover the random number. The other stored identifier is then encoded using the recovered random number and the encoded other identifier is returned to the lock. The lock uses the generated random number to recover the second identifier for comparison to its stored value. If the comparison fails, vehicle operation is prevented. The system may effect several trials, each using a new random number before refusing further attempts. The lock electronics is preferably disposed in the vehicle fuel tank and controls operation of the vehicle fuel pump.
Abstract:
A filter device and technique are described which rely on absorption rather than adsorption for the removal of gas phase contaminants. A filter media (49) is composed of wicking fibers which are impregnated with any of a variety of liquid phase absorbing systems made from the combination of a carrier liquid and soluble complexing/degrading agent or agents. The wicking fibers may be connected to an external reservoir (37) which can be used to supply fresh absorbing fluid to the filter media giving them a potentially inexhaustible capacity. The filter media may be made from any of a variety of fibers which can rapidly transport a liquid phase by the nature of either their geometry or their chemical composition. Geometries may include multilobal cross-sectional configurations, porous hollow fibers, porous or striated fibers or tightly bundled microfibers, all of which exhibit the property of wicking fluid from an external source.
Abstract:
A vehicle anti-theft system in the form of a mechanically interengagable electronic key and lock includes stored key and vehicle identifiers in both the key and in the lock. A random number is generated in the lock each time the vehicle ignition switch is closed and that random number is used to encode one of the identifiers for transmission to the key. The key uses the corresponding stored identifier to recover the random number. The other stored identifier is then encoded using the recovered random number and the encoded other identifier is returned to the lock. The lock uses the generated random number to recover the second identifier for comparison to its stored value. If the comparison fails, vehicle operation is prevented. The system may effect several trials, each using a new random number before refusing further attempts. The lock electronics is preferably disposed in the vehicle fuel tank and controls operation of the vehicle fuel pump.
Abstract:
A filter device and technique are described which rely on absorption rather than adsorption for the removal of gas phase contaminants. A filter media (49) is composed of wicking fibers which are impregnated with any of a variety of liquid phase absorbing systems made from the combination of a carrier liquid and soluble complexing/degrading agent or agents. The wicking fibers may be connected to an external reservoir (37) which can be used to supply fresh absorbing fluid to the filter media giving them a potentially inexhaustible capacity. The filter media may be made from any of a variety of fibers which can rapidly transport a liquid phase by the nature of either their geometry or their chemical composition. Geometries may include multilobal cross-sectional configurations, porous hollow fibers, porous or striated fibers or tightly bundled microfibers, all of which exhibit the property of wicking fluid from an external source.