Abstract:
The disclosed embodiments provide a system that transfers data from a storage device to a host. The system includes a communication mechanism that receives a request to read a set of blocks from the host. Next, upon reading each block from the set of blocks from the storage device, the communication mechanism transfers the block over an interface with the host. The system also includes an error-detection apparatus that performs error detection on the block upon reading the block, and an error-correction apparatus that performs error correction on the block if an error is detected in the block. The communication mechanism may then retransfer the block to the host after the error is removed from the block.
Abstract:
A media processing system and device 100 with improved power usage characteristics, improved audio functionality and improved media security is provided. Embodiments of the media processing system 100 include an audio processing subsystem 301 that operates independently of the host processor 304 for long periods of time, allowing the host processor 304 to enter a low power state. Other aspects of the media processing system 100 provide for enhanced audio effects such as mixing stored audio samples into real-time telephone audio. Still other aspects of the media processing system 100 provide for improved media security due to the isolation of decrypted audio data from the host processor 304.
Abstract:
One embodiment of the present invention provides a system that switches between frame buffers which are used to refresh a display. During operation, the system refreshes the display from a first frame buffer which is located in a first memory. Upon receiving a request to switch frame buffers for the display, the system reconfigures data transfers to the display so that the display is refreshed from a second frame buffer which is located in a second memory.
Abstract:
One embodiment of the present invention provides a system that switches from a first graphics processor to a second graphics processor to drive a display. During operation, the system receives a request to switch a signal source which drives the display from the first graphics processor to the second graphics processor. In response to the request, the system first configures the second graphics processor so that the second graphics processor is ready to drive the display. Next, the system switches the signal source that drives the display from the first graphics processor to the second graphics processor, thereby causing the second graphics processor to drive the display.
Abstract:
A media processing system and device 100 with improved power usage characteristics, improved audio functionality and improved media security is provided. Embodiments of the media processing system 100 include an audio processing subsystem 301 that operates independently of the host processor 304 for long periods of time, allowing the host processor 304 to enter a low power state. Other aspects of the media processing system 100 provide for enhanced audio effects such as mixing stored audio samples into realtime telephone audio. Still other aspects of the media processing system 100 provide for improved media security due to the isolation of decrypted audio data from the host processor 304.
Abstract:
The disclosed embodiments provide a system that transfers data from a storage device to a host. The system includes a communication mechanism that receives a request to read a set of blocks from the host. Next, upon reading each block from the set of blocks from the storage device, the communication mechanism transfers the block over an interface with the host. The system also includes an error-detection apparatus that performs error detection on the block upon reading the block, and an error-correction apparatus that performs error correction on the block if an error is detected in the block. The communication mechanism may then retransfer the block to the host after the error is removed from the block.
Abstract:
A media processing system and device 100 with improved power usage characteristics, improved audio functionality and improved media security is provided. Embodiments of the media processing system 100 include an audio processing subsystem 301 that operates independently of the host processor 304 for long periods of time, allowing the host processor 304 to enter a low power state. Other aspects of the media processing system 100 provide for enhanced audio effects such as mixing stored audio samples into realtime telephone audio. Still other aspects of the media processing system 100 provide for improved media security due to the isolation of decrypted audio data from the host processor 304.
Abstract:
One embodiment of the present invention provides a system that switches between frame buffers which are used to refresh a display. During operation, the system refreshes the display from a first frame buffer which is located in a first memory. Upon receiving a request to switch frame buffers for the display, the system reconfigures data transfers to the display so that the display is refreshed from a second frame buffer which is located in a second memory.