Abstract:
A method of operating a wearable electronic device having a display and a rotatable crown includes initiating a rotation-tracking mode based on a detection of a contact between a user and the rotatable crown. In response to initiating the rotation-tracking mode, the electronic device controls a graphical output of the display in accordance with rotational movement or absence of rotational movement of the rotatable crown, terminates the rotation-tracking mode based on a termination of the contact between the user and the rotatable crown, and in response to terminating the rotation-tracking mode, controls the graphical output of the display without regard to rotational movement or absence of rotational movement of the rotatable crown.
Abstract:
In any context where a user can view multiple different content items, switching among content items is provided using an array mode. In a full frame mode, one content item is visible and active, but other content items may also be open. In response to user input the display can be switched to an array mode, in which all of the content items are visible in a scrollable array. Selecting a content item in array mode can result in the display returning to the full frame mode, with the selected content item becoming visible and active. Smoothly animated transitions between the full frame and array modes and a gesture based interface for controlling the transitions can also be provided.
Abstract:
A wireless electronic device may include antenna structures and antenna tuning circuitry. The device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The antenna tuning circuitry may include switchable inductor circuits and variable capacitor circuits for the upper and lower antennas. The switchable inductor circuits associated with the upper antenna may be tuned to provide coverage in at least two high-band frequency ranges of interest, whereas the variable capacitor circuits associated with the upper antenna may be tuned to provide coverage in at least two low-band frequency ranges of interest.
Abstract:
A computer including a base and a display selectively removable from the base. The base includes a processor, a base wireless chip, and a power source. The display includes a screen for displaying a video output, a display wireless chip in communicating with the base wireless chip, and a power wireless chip in communication with the power source. The base wireless chip transmits data from the processor to the display. Also, when the display is at least in one position with respect to the base, the power source transmits power to the power transition member of the display.
Abstract:
Wireless electronic devices such as cellular telephones may communicate with computing equipment such as servers over a network. Voice telephone calls may be routed over voice links in a voice network and data may be conveyed over data links in a data network. The voice network may be formed using the public switched telephone network. The data network may be formed using the Internet. Cellular base stations may form wireless links with the wireless devices. A server may store information on the current internet protocol address of a wireless device user. The user may place a voice telephone call to an organization. In response to receiving the voice telephone call, a server may automatically transmit information such as web pages or other data that includes interactive on-screen options to the wireless device using the current internet protocol address of the device.
Abstract:
The present disclosure generally relates to interfaces and techniques for media playback on one or more devices. In accordance with some embodiments, an electronic device includes a display, one or more processors, and memory. The electronic device receives user input and, in response to receiving the user input, displays, on the display, a multi-device interface that includes: one or more indicators associated with a plurality of available playback devices that are connected to the device and available to initiate playback of media from the device, and a media playback status of the plurality of available playback devices.
Abstract:
This is directed to rotating an entire user interface of a portable electronic device. In particular, this is directed to defining a UI orientation mode in which a user can direct the device to rotate a UI. When the UI orientation mode is enabled, the electronic device can detect particular inputs, for example based on the outputs of motion sensing components such as an accelerometer and a magnetometer, to determine how to rotate the UI. Once the UI has been rotated to a desired orientation, a user can lock the UI orientation and exit the UI orientation mode.
Abstract:
An electronic device has a display and has a touch sensitive bezel surrounding the display. Areas on the bezel are designated for controls used to operate the electronic device. Visual guides corresponding to the controls are displayed on the display adjacent the areas of the bezel designated for the controls. Touch data is generated by the bezel when a user touches an area of the bezel. The device determines which of the controls has been selected based on which designated area is associated with the touch data from the bezel. The device then initiates the determined control. The device can have a sensor for determining the orientation of the device. Based on the orientation, the device can alter the areas designated on the bezel for the controls and can alter the location of the visual guides for the display so that they match the altered areas on the bezel.
Abstract:
The present disclosure generally relates to interfaces and techniques for media playback on one or more devices. In accordance with some embodiments, an electronic device includes a display, one or more processors, and memory. The electronic device receives user input and, in response to receiving the user input, displays, on the display, a multi-device interface that includes: one or more indicators associated with a plurality of available playback devices that are connected to the device and available to initiate playback of media from the device, and a media playback status of the plurality of available playback devices.
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.