Abstract:
In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface, and one or more sensors for detecting intensities of contacts on the touch-sensitive surface. The device concurrently displays, on the display: a background user interface; and a first version of a notification associated with a first application, wherein: the first version of the notification has a first size, the first version of the notification includes first content, and the first version of the notification is overlaid on the background user interface. While displaying the first version of the notification associated with the first application overlaid on the background user interface, the device detects a first portion of a first input that includes detecting a first contact at a location on the touch-sensitive surface that corresponds to the first version of the notification. In response to detecting the first portion of the first input: in accordance with a determination that the first portion of the first input meets application-launching criteria, wherein the application launching criteria do not require that a characteristic intensity of the first contact on the touch-sensitive surface meet a preview intensity threshold in order for the application launching criteria to be met, the device initiates a process to launch the first application, wherein launching the first application includes ceasing to display the background user interface and displaying a user interface associated with the first application; and, in accordance with a determination that the first portion of the first input meets notification expansion criteria, wherein the notification-expansion criteria require that the characteristic intensity of the first contact on the touch-sensitive surface meet the preview intensity threshold in order for the notification-expansion criteria to be met, the device displays a second version of the notification, wherein: the second version of the notification has a second size larger than the first size, the second version of the notification includes expanded notification content that is not displayed in the first version of the notification, and the second version of the notification is overlaid on the background user interface.
Abstract:
The present disclosure generally relates to interfaces and techniques for media playback on one or more devices. In accordance with some embodiments, an electronic device includes a display, one or more processors, and memory. The electronic device receives user input and, in response to receiving the user input, displays, on the display, a multi-device interface that includes: one or more indicators associated with a plurality of available playback devices that are connected to the device and available to initiate playback of media from the device, and a media playback status of the plurality of available playback devices.
Abstract:
A number of candidate binaural room impulse responses (BRIRs) are analyzed to select one of them as a selected first BRIR that is to be applied to diffuse audio, and another one as a selected second BRIR that is to be applied to direct audio, of a sound program. A first binaural rendering process is performed on the diffuse audio by applying the selected first BRIR and a first head related transfer function (HRTF) to the diffuse audio. A second binaural rendering process is performed on the direct audio by applying the selected second BRIR and a second HRTF to the direct audio. Results of the two binaural rendering processes are combined to produce headphone driver signals. Other embodiments are also described and claimed.
Abstract:
A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
Abstract:
An electronic device displays, on a display, a user interface that includes first and second interactive regions of an application. While displaying the user interface, the device detects an input by a contact on the touch-sensitive surface at a location that corresponds to a user interface element in the first interactive region on the display. In response to detecting the input by the contact, when the input meets intensity-based activation criteria (e.g., the contact has a characteristic intensity above an intensity threshold), the device obscures the first interactive region of the application with the exception of the user interface element without obscuring the second interactive region of the application. When the input meets selection criteria (e.g., the contact has a characteristic intensity below the intensity threshold), the device performs a selection operation that corresponds to the user interface element without obscuring the first interactive region of the application.
Abstract:
The present disclosure generally relates to interfaces and techniques for media playback on one or more devices. In accordance with some embodiments, an electronic device includes a display, one or more processors, and memory. The electronic device receives user input and, in response to receiving the user input, displays, on the display, a multi-device interface that includes: one or more indicators associated with a plurality of available playback devices that are connected to the device and available to initiate playback of media from the device, and a media playback status of the plurality of available playback devices.
Abstract:
An electronic device detecting an alert event; and, in response, delays provision of feedback indicative of the alert event until determining whether the electronic device is in a first use context or in a second use context. In response to determining whether the electronic device is in the first use context or the second use context, the device, in accordance with a determination that the electronic device is in the first use context, provides first feedback indicative of the alert event. The device, in accordance with a determination that the electronic device is in the second use context that is distinct from the first use context, provides second feedback indicative of the alert event.
Abstract:
An electronic device displays, on a display, a user interface that includes first and second interactive regions of an application. While displaying the user interface, the device detects an input by a contact on the touch-sensitive surface at a location that corresponds to a user interface element in the first interactive region on the display. In response to detecting the input by the contact, when the input meets intensity-based activation criteria (e.g., the contact has a characteristic intensity above an intensity threshold), the device obscures the first interactive region of the application with the exception of the user interface element without obscuring the second interactive region of the application. When the input meets selection criteria (e.g., the contact has a characteristic intensity below the intensity threshold), the device performs a selection operation that corresponds to the user interface element without obscuring the first interactive region of the application.
Abstract:
An audio capture device generates two microphone beam patterns with different directivity indices. The audio capture device may determine the position of a user relative to the audio capture device based on sounds detected by the separate microphone beam patterns. Accordingly, the audio capture device allows the determination of the position of the user without the complexity and cost of using a dedicated listening device and/or a camera. In particular, the audio capture device does not need to be immediately proximate to the user (e.g., held near the ear of the user) and may be used to immediately provide other services to the user (e.g., audio/video playback, telephony functions, etc.). The position of the user may include the measured distance between the audio capture device and the user, the proximity of the user relative to another device/object, and/or the orientation of the user relative to the audio capture device.
Abstract:
An electronic device detecting an alert event; and, in response, delays provision of feedback indicative of the alert event until determining whether the electronic device is in a first use context or in a second use context. In response to determining whether the electronic device is in the first use context or the second use context, the device, in accordance with a determination that the electronic device is in the first use context, provides first feedback indicative of the alert event. The device, in accordance with a determination that the electronic device is in the second use context that is distinct from the first use context, provides second feedback indicative of the alert event.