Abstract:
In an embodiment, a haptic feedback system includes a plurality of actuators to provide tactile feedback associated with an input surface. Each actuator is adapted to be activated independently of the other actuators. The system further includes a controller to activate a first actuator of the plurality of actuators to induce a first vibration at a selected input location of the input surface and to activate one or more additional actuators to induce at least a second vibration to localize the first vibration at the selected input location.
Abstract:
Methods and aparatuses disclosed herein relate to backlit visual display elements. A visual display element may include a base layer defining one or more microperforations and a light guide coupled to a light source. The light guide may be positioned adjacent the base layer and include one or more microlenses in alignment with the one or more microperforations along at least one vertical axis.
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
Abstract:
A device such as a multicolor light emitting diode that emits different colors of light and that may combine the different colors emitted by individual light emitting diodes. The multicolor LED may include a common anode terminal that may be connected to each anode of the individual light emitting diodes. The multicolor LED may be a five terminal multicolor LED. Additionally, the multicolor LED may include two anode terminals, in which the first anode terminal may be a common anode terminal connected to three of the individual color LEDs and the second anode terminal may be connected to an anode of a white LED. In this embodiment, the multicolor LED may be a six terminal multicolor LED.
Abstract:
Methods and apparatuses are disclosed that provide user interface behaviors for input devices with individually controlled illuminated input elements. Some embodiments may include receiving a request for input device lighting from a program, determining illumination information for light sources coupled to input elements of an input device based on the request, and dynamically controlling illumination of the light sources based on the illumination information. The illumination information may include brightness, color, and/or duration. The input device may constitute a keyboard with individually controlled illuminated keys. In some embodiments, the illumination may present information related to the program, functionality of input elements, and/or notifications. The request for input device lighting from the program may be based on input selections received from the input device such as illuminating keys on a keyboard that are possible next letters in a word being typed or keys associated with a pressed command key.
Abstract:
A system for enhancing audio including a computer and an output device. The computer includes a sensor configured to determine a user location relative to the computer. The sensor is also configured to gather environment data corresponding to an environment of the computer. The computer also includes a processor in communication with the sensor and configured to process the user location and the environment data and adjust at least one of an audio output or a video output. The output device is in communication with the processor and is configured to output at least one of the audio output or the video output.
Abstract:
In an embodiment, a system includes a plurality of ports and a proximity detection circuit to detect the presence of a connector relative to at least one port of the plurality of ports, prior to engagement of the connector with the port. Alternatives include a position sensor to determine the general distance of the connector from the port, and an orientation sensor to determine the orientation of the connector relative to the port. The system further includes a signal generator to provide at least one user-detectable signal representative of one or more of the proximity, position and orientation of the connector relative to the port to assist a user in engaging the connector with the port.
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.