Abstract:
An electromagnetic induction power transfer apparatus (100) comprises:an inductive power transmitter (102), comprising:a power supply with an active state and an inactive state, configured to switch between the active state and the inactive state at a selectable duty cycle; and a power-transmitting inductor (102-12) coupled to the power supply; and an inductive power receiver (104), comprising:a power-receiving inductor (104-12), positioned inductively proximate the power-transmitting inductor; a programmable load (104-12); and an impedance controller (104-6) coupled to the power receiving inductor and configured to increase or decrease an electrical impedance of the inductive power receiver in response to a change in a power requirement of the programmable load.
Abstract:
In an inductive energy transfer system, the phase of a signal that is applied to a transmitter coil to transfer energy is adjusted while energy is transferred from the transmitter device to a receiver device. The phase of the signal can be adjusted by changing a state of a DC-to-AC converter from a converting state to a non-converting state. The DC-to-AC converter outputs a signal that is applied to the transmitter coil when the DC-to-AC converter is in a converting state. A signal is not applied to the transmitter coil when the DC-to-AC converter is in a non-converting state.
Abstract:
A wireless charging system including a transmitter and a receiver. The transmitter is formed of a coil of wire that includes a first loop portion, a second loop portion, and a crossing portion. The crossing portion electrically couples the first loop portion and the second loop portion such that when current is generated in the coil, electrical current flows through the first loop portion in a different rotational direction than in the second loop portion. The receiver is formed of a ferromagnetic core and multiple (e.g., three) coils disposed about the ferromagnetic core. Each coil may be disposed about a different axis of the core such that current may be induced in at least one of the coils by a magnetic field in any direction.
Abstract:
A receiver device (404) in a coupled coil system (400) for wireless energy transfer includes a receiver coil (410) and a load device (414) operatively connected to the receiver coil and configured to receive a signal from the receiver coil. As one example, the load device is a rechargeable battery. An adjusting filter (416) is included in the receiver device and is operatively connected between the receiver coil and the load device. The adjusting filter can be used to transform the effective resistance or impedance of the load as presented to the transformer during energy transfer so that the effective resistant or impedance of the load is maintained at a substantially constant level, and the signal received by the load device is maintained at a substantially constant level.
Abstract:
Methods and apparatuses for improved efficiency of power transfer across an inductive charging interface by adaptively changing the impedance of the receive coil in response to changes in load conditions during inductive power transfer are disclosed.
Abstract:
In an inductive energy transfer system, the phase of a signal that is applied to a transmitter coil to transfer energy is adjusted while energy is transferred from the transmitter device to a receiver device. The phase of the signal can be adjusted by changing a state of a DC-to-AC converter from a converting state to a non-converting state. The DC-to-AC converter outputs a signal that is applied to the transmitter coil when the DC-to-AC converter is in a converting state. A signal is not applied to the transmitter coil when the DC-to-AC converter is in a non-converting state.
Abstract:
A receiver device in a coupled coil system for wireless energy transfer includes a receiver coil and a load device operatively connected to the receiver coil and configured to receive a signal from the receiver coil. As one example, the load device is a rechargeable battery. An adjusting filter is included in the receiver device and is operatively connected between the receiver coil and the load device. The adjusting filter can be used to transform the effective resistance or impedance of the load as presented to the transformer during energy transfer so that the effective resistant or impedance of the load is maintained at a substantially constant level, and the signal received by the load device is maintained at a substantially constant level.