SUPERJUNCTION POWER MOSFET
    1.
    发明申请
    SUPERJUNCTION POWER MOSFET 审中-公开
    超级功率MOSFET

    公开(公告)号:WO2007133280A2

    公开(公告)日:2007-11-22

    申请号:PCT/US2006060826

    申请日:2006-11-13

    Abstract: Methods and apparatus are provided for TMOS devices (40), comprising multiple N-type source regions (50), electrically in parallel, located in multiple P-body regions (46) separated by N-type JFET regions (56) at a first surface. The gate (53) overlies the body channel regions (46) and the JFET region (56) lying between the body regions. The JFET region (56) communicates with an underlying drain region (42) via an N-epi region (44). Ion implantation and heat treatment are used to tailor the net active doping concentration N d in the JFET region (56) of length L acc and net active doping concentration N a in the P-body regions (46) of length L body so that a charge balance relationship (L body * N a ) = k 1 *(L acc * N d ) between P-body and JFET regions is satisfied, where k 1 is about 0.6 = k 1 = 1.4. The entire device (40) can be fabricated using planar technology and the charge balanced regions need not extend through the underlying N-epi region (44) to the drain (42).

    Abstract translation: 提供了用于TMOS器件(40)的方法和装置,其包括多个并联的N型源极区(50),位于由N型JFET区域(56)分开的多个P体区域(46)中,第一 表面。 栅极(53)覆盖在身体区域(46)和位于身体区域之间的JFET区域(56)之间。 JFET区域(56)经由N-epi区域(44)与下面的漏极区域(42)连通。 离子注入和热处理用于定制长度为L的JFET区域(56)中的净有源掺杂浓度N sub和净活性掺杂浓度N SUB 在长度为L本体的P体区域(46)中的一个,使得电荷平衡关系(L * N ]]>其中k≠1时,满足P体和JFET区域之间的距离(k)= k 1(N) 约为0.6 = k 1 = 1.4。 整个器件(40)可以使用平面技术制造,并且电荷平衡区域不需要延伸穿过下面的N外延区域(44)到漏极(42)。

    METHODS OF IMPLEMENTING MAGNETIC TUNNEL JUNCTION CURRENT SENSORS
    2.
    发明申请
    METHODS OF IMPLEMENTING MAGNETIC TUNNEL JUNCTION CURRENT SENSORS 审中-公开
    实施磁隧道结电流传感器的方法

    公开(公告)号:WO2007053341A3

    公开(公告)日:2007-11-15

    申请号:PCT/US2006041148

    申请日:2006-10-20

    CPC classification number: H01L43/12 H01L27/228

    Abstract: An integrated circuit device (800) is provided which comprises a substrate (801), a conductive line (807) configured to experience a pressure, and a magnetic tunnel junction ("MTJ") core (802) formed between the substrate and the current line. The conductive line (807) is configured to move in response to the pressure, and carries a current which generates a magnetic field. The MTJ core (802) has a resistance value which varies based on the magnetic field. The resistance of the MTJ core (802) therefore varies with respect to changes in the pressure. The MTJ core (802) is configured to produce an electrical output signal which varies as a function of the pressure.

    Abstract translation: 提供了一种集成电路器件(800),其包括衬底(801),被配置为经受压力的导线(807)和形成在衬底和电流之间的磁性隧道结(“MTJ”)芯 线。 导线807配置为响应于压力移动,并且传送产生磁场的电流。 MTJ磁芯(802)具有基于磁场而变化的电阻值。 因此,MTJ芯(802)的电阻因压力变化而变化。 MTJ内核(802)被配置为产生作为压力的函数而变化的电输出信号。

    METHOD FOR TUNNEL JUNCTION SENSOR WITH MAGNETIC CLADDING
    3.
    发明申请
    METHOD FOR TUNNEL JUNCTION SENSOR WITH MAGNETIC CLADDING 审中-公开
    隧道连接传感器与磁悬浮方法

    公开(公告)号:WO2007016009A3

    公开(公告)日:2008-01-17

    申请号:PCT/US2006028573

    申请日:2006-07-24

    Abstract: Methods and apparatus are provided for sensing physical parameters. The apparatus (30) comprises a magnetic tunnel junction (MTJ) [32] and a magnetic field source (34) whose magnetic field (35) overlaps the MTJ and whose proximity to the MTJ varies in response to an input to the sensor. A magnetic shield (33) is provided at least on a face of the MFS away from the MTJ. The MTJ comprises first and second magnetic electrodes (36, 38) separated by a dielectric (37) configured to permit significant tunneling conduction therebetween. The first magnetic region has its spin axis pinned and the second magnetic electrode has its spin axis free. The magnetic field source is oriented closer to the second magnetic electrode than the first magnetic electrode. The overall sensor dynamic range is extended by providing multiple electrically coupled sensors receiving the same input but with different individual response curves and desirably but not essentially formed on the same substrate.

    Abstract translation: 提供了用于感测物理参数的方法和装置。 该装置(30)包括一个磁性隧道结(MTJ)[32]和一个磁场源(34),其磁场(35)与MTJ重叠,并且其与MTJ的接近度响应于传感器的输入而变化。 至少在远离MTJ的MFS的面上设有磁屏蔽(33)。 MTJ包括由电介质(37)分开的第一和第二磁极(36,38),其被配置为允许它们之间的显着的隧道传导。 第一磁性区域的自旋轴被固定,第二磁极的自由轴自由。 磁场源比第一磁极更靠近第二磁极。 通过提供多个电耦合传感器来接收相同的输入但是具有不同的单个响应曲线并且期望地但不是基本上形成在相同的基板上来扩展总传感器动态范围。

    MAGNETIC TUNNEL JUNCTION CURRENT SENSORS
    4.
    发明申请

    公开(公告)号:WO2007053340A2

    公开(公告)日:2007-05-10

    申请号:PCT/US2006041147

    申请日:2006-10-20

    CPC classification number: G11C11/1675 G11C11/1659 G11C11/1673

    Abstract: An integrated circuit device (600) is provided which includes an active circuit component (604, 804) and a current sensor (602, 802). The active circuit component (604, 804) may be coupled between a first conductive layer (206) and a second conductive layer (210), and is configured to produce a first current. The current sensor (602, 802) is disposed over the active circuit component. The current sensor (602, 802) may comprise a Magnetic Tunnel Junction ("MTJ") core disposed between the first conductive layer (206) and the second conductive layer (210). The MTJ core is configured to sense the first current and produce a second current based on the first current sensed at the MTJ core.

    Abstract translation: 提供了一种集成电路装置(600),其包括有源电路部件(604,804)和电流传感器(602,802)。 有源电路组件(604,804)可以耦合在第一导电层(206)和第二导电层(210)之间,并且被配置为产生第一电流。 电流传感器(602,802)设置在有源电路部件上。 电流传感器(602,802)可以包括设置在第一导电层(206)和第二导电层(210)之间的磁隧道结(“MTJ”)芯。 MTJ内核被配置为基于在MTJ核心处感测到的第一电流来感测第一电流并产生第二电流。

    TUNNEL JUNCTION SENSOR WITH MAGNETIC CLADDING
    5.
    发明申请
    TUNNEL JUNCTION SENSOR WITH MAGNETIC CLADDING 审中-公开
    隧道式连接传感器

    公开(公告)号:WO2007016010A3

    公开(公告)日:2009-04-02

    申请号:PCT/US2006028574

    申请日:2006-07-24

    CPC classification number: G01R33/06 B82Y25/00 G01R33/093 G01R33/098

    Abstract: Methods and apparatus are provided for sensing physical parameters. The apparatus (30) comprises a magnetic tunnel junction (MTJ) [32] and a magnetic field source (34) whose magnetic field (35) overlaps the MTJ and whose proximity to the MTJ varies in response to an input to the sensor. A magnetic shield (33) is provided at least on a face of the MFS away from the MTJ. The MTJ comprises first and second magnetic electrodes (36, 38) separated by a dielectric (37) configured to permit significant tunneling conduction therebetween. The first magnetic region has its spin axis pinned and the second magnetic electrode has its spin axis free. The magnetic field source is oriented closer to the second magnetic electrode than the first magnetic electrode. The overall sensor dynamic range is extended by providing multiple electrically coupled sensors receiving the same input but with different individual response curves and desirably but not essentially formed on the same substrate.

    Abstract translation: 提供了用于感测物理参数的方法和装置。 该装置(30)包括一个磁性隧道结(MTJ)[32]和一个磁场源(34),其磁场(35)与MTJ重叠,并且其与MTJ的接近度响应于传感器的输入而变化。 至少在远离MTJ的MFS的面上设有磁屏蔽(33)。 MTJ包括由电介质(37)分开的第一和第二磁极(36,38),其被配置为允许它们之间的显着的隧道传导。 第一磁性区域的自旋轴被固定,第二磁极的自由轴自由。 磁场源比第一磁极更靠近第二磁极。 通过提供多个电耦合传感器来接收相同的输入但是具有不同的单个响应曲线并且期望地但不是基本上形成在相同的基板上来扩展总传感器动态范围。

    MAGNETIC TUNNEL JUNCTION SENSOR
    6.
    发明申请
    MAGNETIC TUNNEL JUNCTION SENSOR 审中-公开
    磁性隧道接头传感器

    公开(公告)号:WO2007016011A3

    公开(公告)日:2008-09-12

    申请号:PCT/US2006028576

    申请日:2006-07-24

    CPC classification number: G01R33/06

    Abstract: Methods and apparatus are provided for sensing physical parameters. The apparatus (130) comprises a magnetic tunnel junction (MTJ) (32) and a magnetic field source (34) whose magnetic field (35) overlaps the MTJ and whose proximity to the MTJ varies in response to an input to the sensor. The MTJ comprises first and second magnetic electrodes (36, 38) separated by a dielectric (37) configured to permit significant tunneling conduction therebetween. The first magnetic electrode has its spin axis pinned and the second magnetic electrode has its spin axis free. The magnetic field source is oriented closer to the second magnetic electrode than the first magnetic electrode. The overall sensor dynamic range is extended by providing multiple electrically coupled sensors receiving the same input but with different individual response curves and desirably but not essentially formed on the same substrate (72).

    Abstract translation: 提供了用于感测物理参数的方法和装置。 该装置(130)包括一个磁性隧道结(MTJ)(32)和一个磁场源(34),其磁场(35)与MTJ重叠,并且其与MTJ的接近度响应于传感器的输入而变化。 MTJ包括由电介质(37)分开的第一和第二磁极(36,38),其被配置为允许它们之间的显着的隧道传导。 第一磁极的自旋轴被固定,第二磁极具有自由轴。 磁场源比第一磁极更靠近第二磁极。 通过提供接收相同输入但具有不同单独响应曲线的多个电耦合传感器并期望地但不是基本上形成在同一基板(72)上来扩展总传感器动态范围。

    MAGNETIC TUNNEL JUNCTION TEMPERATURE SENSORS AND METHODS
    8.
    发明申请
    MAGNETIC TUNNEL JUNCTION TEMPERATURE SENSORS AND METHODS 审中-公开
    磁性隧道结温度传感器及方法

    公开(公告)号:WO2007040991A3

    公开(公告)日:2009-04-16

    申请号:PCT/US2006036634

    申请日:2006-09-20

    CPC classification number: H01L27/228 G01K7/36 Y10T428/1114

    Abstract: Techniques of sensing a temperature of a heat source disposed in a substrate of an integrated circuit (600) are provided. According to one exemplary method, a Magnetic Tunnel Junction ("MTJ") temperature sensor (608) is provided over the heat source (604). The MTJ temperature sensor comprises an MTJ core configured to output a current during operation thereof. The value of the current varies based on a resistance value of the particular MTJ core. The resistance value of the MTJ core varies as a function of the temperature of the heat source. A value of the current of the MTJ core can then be associated with a corresponding temperature of the heat source.

    Abstract translation: 提供了感测设置在集成电路(600)的基板中的热源的温度的技术。 根据一个示例性方法,在热源(604)之上提供磁隧道结(“MTJ”)温度传感器(608)。 MTJ温度传感器包括被配置为在其操作期间输出电流的MTJ内核。 电流值根据特定MTJ磁芯的电阻值而变化。 MTJ芯的电阻值随着热源的温度而变化。 然后,MTJ芯的电流的值可以与热源的相应温度相关联。

    MRAM EMBEDDED SMART POWER INTEGRATED CIRCUITS
    9.
    发明申请
    MRAM EMBEDDED SMART POWER INTEGRATED CIRCUITS 审中-公开
    MRAM嵌入式智能功率集成电路

    公开(公告)号:WO2007005303A2

    公开(公告)日:2007-01-11

    申请号:PCT/US2006024228

    申请日:2006-06-22

    CPC classification number: G11C11/1659 H01F10/3254

    Abstract: An integrated circuit device (300) includes a magnetic random access memory ("MRAM") architecture and a smart power integrated circuit architecture formed on the same substrate (302) using the same fabrication process technology. The fabrication process technology is a modular process having a front end process and a back end process. In the example embodiment, the smart power architecture includes a power circuit component (304), a digital logic component (306), and an analog control component (312) formed by the front end process, and a sensor architecture (308) formed by the back end process. The MRAM architecture (310) includes an MRAM circuit component (314) formed by the front end process and an MRAM cell array (310) formed by the back end process. In one practical embodiment, the sensor architecture (308) includes a sensor component that is formed from the same magnetic tunnel junction core material utilized by the MRAM cell array (316). The concurrent fabrication of the MRAM architecture (310) and the smart power architecture facilitates an efficient and cost effective use of the physical space available over active circuit blocks of the substrate, resulting in three-dimensional integration.

    Abstract translation: 集成电路器件(300)包括磁性随机存取存储器(“MRAM”)结构和使用相同制造工艺技术在相同衬底(302)上形成的智能功率集成电路架构。 制造工艺技术是具有前端工艺和后端工艺的模块化工艺。 在该示例实施例中,智能电力架构包括由前端处理形成的电源电路部件(304),数字逻辑部件(306)和模拟控制部件(312),以及传感器架构(308),由 后端进程。 MRAM架构(310)包括由前端处理形成的MRAM电路部件(314)和由后端处理形成的MRAM单元阵列(310)。 在一个实际的实施例中,传感器架构(308)包括由MRAM单元阵列(316)使用的相同的磁性隧道结芯体材料形成的传感器部件。 MRAM架构(310)和智能电源架构的并行制造有助于在衬底的有源电路块上可用的物理空间的有效且成本有效的使用,导致三维集成。

Patent Agency Ranking