Abstract:
One general embodiment according to the present disclosure may be formation evaluation tool for detecting radiation in a borehole in a volume of an earth formation. The tool may include a detector including a monolithic scintillation element comprising a coherent assemblage of joined fibers, wherein the fibers are made of an optically transparent scintillation media. The fibers may be at least one of i) gamma ray responsive; and ii) neutron responsive. The coherent assemblage of fibers may be a continuous mass, may be heat-joined. The fibers may be solid. The scintillation media may comprise at least one of i) organic crystalline scintillation materials, ii) amorphous glass, and iii) nanostructured glass ceramics. The coherent assemblage of fibers may be asymmetric. The coherent assemblage of fibers may surround a further scintillation media having different scintillation characteristics than the scintillation media. The scintillation element may be azimuthally sensitive.
Abstract:
An apparatus for performing a downhole operation includes a carrier configured to be disposed in a borehole in an earth formation, and a deformable component configured to be disposed in the borehole. The deformable component includes an elastomeric material and a barrier coating disposed on a surface of the elastomeric material. The barrier coating has properties configured to resist permeation of downhole gases into the elastomeric material at downhole temperatures.
Abstract:
A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
Abstract:
An initiator nanoconstituent comprises a nanoparticle covalently bonded to a group having a free radical. The nanoparticle may be bonded to the group via an ether group or an amide group. The initiator nanoconstituent may be formed in situ, in a mixture comprising an elastomer material to be crosslinked. The initiator nanoconstituent is formed from an organic nanoconstituent compound that includes the nanoparticle and an organic group that does not include a free radical at the time the mixture is formed. At least one chemical bond of the organic nanoconstituent compound may be ruptured, in situ, to form the initiator nanoconstituent, which may then bond with polymer molecules of the elastomer material and form a crosslinked elastomer material. Downhole tools or components thereof may include such crosslinked elastomer material.
Abstract:
An initiator nanoconstituent for crosslinking an elastomer comprises a nanoparticle covalently bonded via an -O(O=)C- group or an N(O=)C- group to a subgroup comprising at least one free radical terminal carbon atom. The-O(O=)C- group or the -N(O=)C- group is directly bonded to the nanoparticle.
Abstract:
A flocculant, according to embodiments of the present disclosure, includes a core nanoparticle and at least one positively charged functional group on a surface of the core nanoparticle. The nanoparticle may comprise a silica, alumina, titania, iron oxide, iron nitride, iron carbide, or a carbon-based nanoparticle. The flocculant may be used, in a method of bitumen recovery, to neutralize and agglomerate bitumen droplets and/or mineral particles derived from oil sands ore. The bitumen droplets agglomerate about the core nanoparticle of the flocculant to form bitumen flocs, while the mineral particles agglomerate about the core nanoparticle of the flocculant to form mineral flocs. The buoyant bitumen flocs may then separate from the dense mineral flocs to enable high-yield recovery of bitumen from oil sands.
Abstract:
A flocculant, according to embodiments of the present disclosure, includes a core nanoparticle and at least one positively charged functional group on a surface of the core nanoparticle. The nanoparticle may comprise a silica, alumina, titania, iron oxide, iron nitride, iron carbide, or a carbon-based nanoparticle. The flocculant may be used, in a method of bitumen recovery, to neutralize and agglomerate bitumen droplets and/or mineral particles derived from oil sands ore. The bitumen droplets agglomerate about the core nanoparticle of the flocculant to form bitumen flocs, while the mineral particles agglomerate about the core nanoparticle of the flocculant to form mineral flocs. The buoyant bitumen flocs may then separate from the dense mineral flocs to enable high-yield recovery of bitumen from oil sands.
Abstract:
A method of extracting hydrocarbons from a subterranean formation comprises forming a suspension comprising reactive particles and a carrier fluid. The suspension is introduced into a subterranean formation containing a hydrocarbon material. At least a portion of the reactive particles are exothermically reacted with at least one other material within the subterranean formation to form a treated hydrocarbon material from the hydrocarbon material. The treated hydrocarbon material is extracted from the subterranean formation. An additional method of extracting hydrocarbons from a subterranean formation, and a method of treating a hydrocarbon material within a subterranean formation are also described.