Abstract:
Methods, systems, and devices for determining a parameter of interest of downhole fluid using an acoustic assembly comprising a single solid acoustic transmission medium having a face immersed in the downhole fluid. Methods include using characteristics of a plurality of acoustic pulse reflections from a solid-liquid interface at the face of the solid acoustic transmission medium to estimate the parameter of interest in near real-time. The characteristics may comprise a corresponding reflection amplitude and the corresponding unique angle of reflection for each acoustic pulse reflection. Methods may include generating a two dimensional data set from measured characteristics, generating a curve by performing data fitting on the two dimensional data set, and using the reciprocal slope of the curve to estimate the parameter of interest. Methods may include estimating time-dependent values for the parameter of interest substantially continuously while the acoustic assembly is on a single logging run in the borehole.
Abstract:
An apparatus for estimating a property of a downhole fluid includes a carrier configured to be conveyed through a borehole penetrating the earth, a fluid extraction device disposed at the carrier and configured to extract a sample of the downhole fluid, and a probe cell having a window to receive the sample. The apparatus further includes a light source to illuminate the sample through the window with light photons, and a photodetector to receive light photons through the window that have interacted with the downhole fluid and generate a signal indicative of an amount of the received light photons. The generated signal is indicative of the property. The photodetector has an optical cavity having a semiconductor that has a difference between a valence energy band and a conduction energy band for electrons that is greater than the energy of each of the received light photons.
Abstract:
A cutting element for an earth-boring drilling tool comprises a cutting body having a cutting surface thereon, and a sensor coupled with the cutting surface, the sensor configured to determine resistivity of a contacting formation. An earth-boring drilling tool comprises a bit body and an instrumented cutting element coupled with the bit body. The cutting element includes a cutting body having a cutting surface thereon, and at least one sensor located proximate the cutting surface. The at least one sensor is oriented and configured to determine resistivity of a contacting formation. A method of determining resistivity of a subterranean formation during a drilling operation comprises energizing a sensor of an instrumented cutting element of a drill bit, sensing a return signal flowing on or through the subterranean formation through the instrumented cutting element, and determining a resistivity of the subterranean formation based, at least in part, on the return signal.
Abstract:
In a particular embodiment, a method is disclosed for determining a source of a fluid downhole. The method includes deploying an ion selective sensor downhole, exposing the fluid to the ion selective sensor downhole, measuring an ion concentration at different places within the fluid and using that information to identify a source of the fluid from the ion concentration profile. In another particular embodiment, an apparatus is disclosed for estimating a source of a fluid. The apparatus contains a tool deployed in a well bore, an ion selective sensor in the tool, a processor in communication with the ion selective sensor and a memory for storing an output from the ion selective sensor.
Abstract:
The present invention provides a chemometric equation to estimate fluid density, viscosity, dielectric constant and resistivity for a formation fluid sample downhole. The chemometric estimates can be used directly as estimated values for fluid density, viscosity, dielectric constant and resistivity for a formation fluid sample downhole. The chemometric estimates can also be plugged into a Levenberg-Marquardt (LM) non-linear least squares fit, as an initial estimate of the parameter to be estimated by the LM fit. If the initial parameter estimate is too far from the actual parameter values, the LM algorithm may take a long time to converge or even fail to converge entirely. The present invention estimates an initial value of a parameter that provides a high probability that the LM algorithm will converge to a global minimum.
Abstract:
Methods, systems, and devices for estimating a parameter of interest of a downhole fluid. Methods may include using at least two solid acoustic transmission media, including a first media and a second media having different acoustic impedances and each having a corresponding face immersed in the downhole fluid. Methods may include using a reflection of an acoustic pulse from a solid-liquid interface at the corresponding face of the first media and the second media to estimate the parameter of interest. The sound speed and the acoustic impedance of the first media and the sound speed and the acoustic impedance of the second media may each be different than a sound speed and an acoustic impedance of the fluid and each other. The parameter of interest may be estimated independently of a time of flight in the downhole fluid of any acoustic pulses.
Abstract:
A seal includes an elastomeric material and a plurality of nanosprings filling the elastomeric material to form a filled elastomeric composite that provides the seal. A spring constant of the nanosprings is within a selected range of an effective spring constant of the elastomeric material such that a durometer of the filled elastomeric composite at an elevated temperature is greater than the durometer of the elastomeric material alone at the elevated temperature. The seal may be used to seal a first component to a second component where both components are configured to perform a task below the surface of the earth.
Abstract:
An apparatus for performing a downhole operation includes a carrier configured to be disposed in a borehole in an earth formation, and a deformable component configured to be disposed in the borehole. The deformable component includes an elastomeric material and a barrier coating disposed on a surface of the elastomeric material. The barrier coating has properties configured to resist permeation of downhole gases into the elastomeric material at downhole temperatures.
Abstract:
Downhole tools for use in wellbores in subterranean formations comprise a body comprising at least one anomalous strengthening material. Methods of forming downhole tools for use in wellbores in subterranean formations comprise forming a body comprising at least one anomalous strengthening material. Methods of using downhole tools in wellbores in subterranean formations comprise disposing a body comprising at least one anomalous strengthening material in a wellbore in a subterranean formation. The at least one anomalous strengthening material may be exposed to a temperature within the wellbore higher than a temperature at a surface of the subterranean formation and a yield strength of the at least one anomalous strengthening material may increase.