Abstract:
The invention relates to the use of transition metal carbene complexes in organic light-emitting diodes (OLEDS), to a light-emitting layer, a blocking layer for electrons or excitrons or a blocking layer for holes containing these transition metal carbene complexes, OLED's containing these transition metal carbene complexes, devices, which contain an inventive OLED, and to transition metal carbene complexes.
Abstract:
The invention relates to the use of polymer materials comprising at least one transition metal carbene complex in organic light-emitting diodes (OLEDs), to polymer materials comprising at least one selected transition metal carbene complex, to a method for producing the inventive polymer materials, to a light-emitting layer comprising at least one polymer material used according to the invention or comprising at least one inventive polymer material, to an organic light-emitting diode (OLED) comprising the inventive light-emitting layer and to devices comprising the inventive organic light-emitting diode.
Abstract:
The invention relates to the use of transition metal carbene complexes in organic light-emitting diodes (OLEDS), to a light-emitting layer, a blocking layer for electrons or excitrons or a blocking layer for holes containing these transition metal carbene complexes, OLED's containing these transition metal carbene complexes, devices, which contain an inventive OLED, and to transition metal carbene complexes.
Abstract:
The invention relates to the use of transition metal complexes of formula (I) in organic light-emitting diodes, wherein: M represents a metal atom; carbene represents a carbene ligand; L represents a monoanionic or dianionic ligand; K represents a neutral monodentate or bidentate ligand selected from the group consisting of phosphines, CO, pyridines, nitriles and of conjugated dienes that form a pi-complex with M ; n represents a number of carbene ligands, whereby n is at least 1; m represents a number of ligands L, whereby m can be 0 or = 1; o represents a number of ligands K, whereby o can be 0 or = 1, and the sum n + m + o depends on the oxidation stage and coordination number of the metal atom used and on the dentation of the ligands carbene, L and K as well as on the charge of the ligands carbene and L, with the condition that n is at least 1. The invention also relates to an OLED containing these transition metal complexes, a light-emitting layer containing these transition metal complexes, OLED's containing this light-emitting layer, devices that contain an inventive OLED, and to special transition metal complexes containing at least two carbene ligands.
Abstract:
an OLED comprising these transition metal complexes, a light-emitting layer comprising these transition metal complexes, OLEDs comprising this light-emitting layer, devices comprising an OLED according to the present invention, and specific transition metal complexes comprising atb least two carbene ligands.
Abstract:
The invention relates to a process for vapor deposition of one or more compounds onto a support, in which (i) the compound is introduced in a solid or gaseous state into a carrier gas stream, (ii) the compound is present in a gaseous state in the carrier gas stream, (iii) the gaseous compound is precipitated, (iv) the compound precipitated in step (iii) is once again brought into the gaseous state, and (v) the gaseous compound is subsequently precipitated on the support, wherein the carrier gas stream comprising the gaseous compound(s) is cooled to a temperature below the sublimation temperature of the compound(s) by introduction of a gas stream.
Abstract:
The present invention relates to the use of polymeric materials comprising at least one transition metal-carbene complex in organic light-emitting diodes (OLEDs), polymeric materials comprising at least one selected transition metal-carbene complex, a process for preparing the polymeric materials of the invention, a light-emitting layer comprising at least one polymeric material used according to the invention or at least one polymeric material of the invention, an organic light-emitting diode (OLED) comprising the light-emitting layer of the invention and devices comprising the organic light-emitting diode of the invention.
Abstract:
Process for preparing tris-ortho-metallated iridium complexes of the formula (I) where R1, R2, R3, R4, R5, R6 and X have the meanings given in the description, Ir complexes which can be prepared by the process of the invention, the use of the Ir complexes as emitter molecule in organic light-emitting diodes (OLEDs), a light-emitting layer comprising the Ir complexes, an OLED comprising this light-emitting layer and an apparatus comprising an OLED according to the present invention.