Abstract:
The invention relates to a process for utilizing a hydrocarbon-comprising and/or carbon dioxide-comprising coproduct gas, accompanying gas and/or biogas, wherein hydrocarbon-comprising and/or carbon dioxide-comprising coproduct gas, accompanying gas and/or biogas is introduced into a reaction space and the multicomponent mixture comprised in the coproduct gas, accompanying gas and/or biogas is converted in a high-temperature zone at temperatures of more than 1000° C. and in the presence of a carrier into a product gas mixture which comprises more than 95% by volume of CO, CO2, H2, H2O, CH4 and N2 and optionally into a carbon-comprising solid which is deposited to an extent of at least 75% by weight, based on the total mass of the carbon-comprising solid, on the carrier where the flow velocity of the gas mixture of coproduct gas, accompanying gas and/or biogas in the reaction zone is less than 20 m/s.
Abstract:
The present invention provides a process of producing hydrogen comprising introducing methane and/or other light hydrocarbons into a reaction chamber and reacting said gases in said reaction chamber in a bed of solid carbonaceous materials to give hydrogen, wherein said carbonaceous materials are macro-structured carbonaceous materials, wherein the porosity of the carbonaceous material is in the range of 30 to 70 vol.-% and the carbonaceous material contains a content of carbon of 99 wt.-% to 100 wt.-% and a content of alkaline-earth metals, transition metals and metalloids of 0 and 1 wt.-% in relation to the total mass of the solid carbonaceous material, wherein the iron content is between 0 and 0.5 wt.-%, the magnesium content is between 0 and 0.005 wt.-%, the manganese content is between 0 and 0.01 wt.-%, the silicon content is between 0 and 0.01 wt.-% and the nickel content is between 0 and 0.025 wt.-%. In addition, the present invention provides the use of said carbonaceous materials as carrier material in bed reactors.
Abstract:
The invention relates to a method of carrying out heat-consuming processes, wherein the total energy required averaged over a year for the heat-consuming process originates from at least two different energy sources, where one of the energy sources is an electric energy source whose power varies in the range from 0 to 100% of the total power required, and three different energy modes can individually provide the total power required for the heat-consuming process: (i) exclusively electric energy, (ii) a mixture of electric energy and at least one further nonelectric energy source or (iii) exclusively nonelectric energy, where the changeover time in which the change from one energy mode to another energy mode is completed is not more than 30 minutes.
Abstract:
The invention relates to a process for producing synthesis gas, in which carbon and hydrogen are obtained from hydrocarbon by thermal decomposition. At least a portion of the carbon obtained by the thermal decomposition is reacted, and at least a portion of the hydrogen obtained is reacted with carbon dioxide by a reverse water-gas shift reaction to give carbon monoxide and water. Carbon obtained by the thermal hydrocarbon decomposition is used as fuel in a power plant operation wherein the carbon is combusted to produce electrical power, and carbon dioxide formed in the combustion of the carbon is used in the reverse water-gas shift reaction.
Abstract:
The invention relates to a process for the parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product, wherein one or more hydrocarbons are thermally decomposed and at least part of the pyrolysis gas formed is taken off from the reaction zone of the decomposition reactor at a temperature of from 800 to 1400° C. and reacted with carbon dioxide to form a gas mixture comprising carbon monoxide and hydrogen (synthesis gas).