Abstract:
A process for working up an exhaust gas (A) from a system for producing hydroxylamine or hydroxylammonium salts by catalytic reduction of nitrogen monoxide with hydrogen, wherein the exhaust gas (A) comprises nitrogen monoxide, hydrogen, dinitrogen monoxide, nitrogen and ammonia, and at least some of the hydrogen present in the exhaust gas (A) is separated off from the exhaust gas (A) by means of a gas-tight membrane-electrode assembly which comprises at least one selectively proton-conducting membrane, a retentate side, a permeate side, and, on each side of the membrane, at least one electrode catalyst, wherein, on the retentate side of the membrane, at least some of the hydrogen is oxidized to protons at the anode catalyst and the protons, after crossing the membrane, are, on the permeate side, at the cathode catalyst according to (I) reduced to hydrogen and/or (II) reacted with oxygen to form water, wherein the oxygen originates from an oxygen-comprising stream (O) which is contacted with the permeate side.
Abstract:
Electrodes comprise: (A) a solid medium through which gas can diffuse, (B) at least one electrically conductive, carbonaceous material, (C) at least one organic polymer, (D) at least one compound of the general formula (I) M1 aM2 bM3 cM4 dHeOf, in particulate form, where the variables are each defined as follows: M1 is selected from Mo, W, V, Nb and Sb, M2 is selected from Fe, Ag, Cu, Ni, Mn and lanthanoids, M3 is selected from B, C, N, Al, Si, P and Sn, M4 is selected from Li, Na, K, Rb, Cs, NH4, Mg, Ca and Sr, a is in the range from 1 to 3, b is in the range from 0.1 to 10, c is in the range from 0 to 1, d is in the range from 0 to 1, e is in the range from 0 to 0.5, f is in the range from 1 to 28, and wherein the compound of the general formula (I) has a BET surface area in the range from 1 to 300 m2/g.
Abstract:
The present invention relates to a process for producing carbon-supported nickel-cobalt-oxide catalysts, to carbon-supported nickel-cobalt-oxide catalysts obtainable or obtained by the process according to the invention, to gas diffusion electrodes comprising said carbon-supported nickel-cobalt-oxide catalysts and to electrochemical cells comprising said gas diffusion electrodes.
Abstract:
The present invention relates to a process for producing carbon-supported nickel-cobalt-oxide catalysts, to carbon-supported nickel-cobalt-oxide catalysts obtainable or obtained by the process according to the invention, to gas diffusion electrodes comprising said carbon-supported nickel-cobalt-oxide catalysts and to electrochemical cells comprising said gas diffusion electrodes.
Abstract:
The invention relates to gas diffusion electrodes for rechargeable electrochemical cells, which comprise at least one support material bearing at least one catalyst, wherein the support material comprises at least one Compound selected from the group consisting of electrically conductive metal oxides, carbides, nitrides, borides, silicides and organic semiconductors. The present invention further relates to a process for producing such gas diffusion electrodes and also rechargeable electrochemical cells comprising such gas diffusion electrodes.
Abstract:
The invention discloses electrochemical cells comprising (A) at least one cathode containing at least one lithium ion-containing transition metal oxide that comprises manganese as a transition metal, (B) at least one anode, and (C) at least one layer comprising (a) at least one ion exchanger in particulate form, (b) at least one binder.