Abstract:
The invention relates to a method for the oxidative dehydrogenation of n-butenes to form butadiene, said method comprising two or more production steps (i) and at least one regeneration step (ii). In said method: (i) in a production step a starting gas mixture containing n-butene is mixed with a gas containing oxygen and the mixed gas is brought into contact with a multi-metal-oxide catalyst containing at least molybdenum and another metal in a fixed-bed reactor, at a temperature of between 220 and 490 °C. A product gas mixture at least containing butadiene, oxygen and steam is thus obtained at the outlet of the fixed-bed reactor; (ii) in a regeneration step, to regenerate the multi-metal oxide catalyst, a regeneration gas mixture containing oxygen is passed over the catalyst fixed bed at a temperature between 200 and 450 °C and the carbon deposited on the catalyst is burnt off. A regeneration step (ii) is carried out between two production steps (i), the oxygen content of the product gas mixture at the outlet of the fixed-bed reactor is at least 5 vol. % and the duration of a production step (i) is less than 1,000 h.
Abstract:
The invention relates to a method for the oxidative dehydrogenation of n‑butenes to butadiene, comprising two or more production steps (i) and at least one regeneration step (ii), in which (i) in a production step an n‑butene-containing starting gas mixture is mixed with an oxygen-containing gas and is contacted in a fixed-bed reactor at a temperature of 220 to 490°C with a multimetal oxide catalyst arranged in a catalyst fixed bed, which multimetal oxide catalyst contains at least molybdenum, and one further metal, and, before the loss in conversion rate at constant temperature is > 25%, (ii), in a regeneration step the multimetal oxide catalyst is regenerated by passing an oxygen-containing regeneration gas mixture at a temperature of 200 to 450°C over the catalyst fixed bed and burning off the carbon deposited on the catalyst, wherein, between two production steps (i), one regeneration step (ii) is carried out, characterized in that, per regeneration step (ii), 2 to 50% by weight of the carbon deposited on the catalyst is burnt off.
Abstract:
Verfahren zur Herstellung einer Vinylidencarbonsäure oder deren Estern, wobei man ein Reaktionsgas, das gasförmigen Formaldehyd, molekularen Sauerstoff und eine Alkylcarbonsäure oder deren Ester in Kontakt mit einem festen Katalysator bringt, dessen Aktivmasse ein Vanadium-Phosphoroxid mit einer durchschnittlichen Oxidationsstufe des Vanadiums von +4,40 bis +5,0 umfasst, um ein Produktgas zu erhalten, das die Vinylidencarbonsäure oder deren Ester enthält.
Abstract:
Bei einem Verfahren zur Herstellung von Acrylsäure bringt man ein Reaktionsgas, das eine gasförmige Formaldehydquelle und gasförmige Essigsäure umfasst und worin der Partialdruck der Formaldehydquelle, gerechnet als Formaldehydäquivalente, zumindest 85 mbar beträgt und in dem das molare Verhältnis der Essigsäure zur Formaldehydquelle, gerechnet als Formaldehydäquivalente, zumindest 1 beträgt, in Kontakt mit einem festen Kondensationskatalysator. Die Raum-Zeit-Ausbeute lässt sich durch Erhöhen des Partialdrucks der Edukte signifikant steigern. Die Raum-Zeit-Ausbeute bleibt auch nach längerer Verfahrensdauer hoch.
Abstract:
In a process for preparing acrylic acid, a reaction gas which comprises a gaseous formaldehyde source and gaseous acetic acid and in which the partial pressure of the formaldehyde source, calculated as formaldehyde equivalents, is at least 85 mbar and in which the molar ratio of the acetic acid to the formaldehyde source, calculated as formaldehyde equivalents, is at least 1 is contacted with a solid condensation catalyst. The space-time yield can be enhanced significantly by increasing the partial pressure of the reactants. The space-time yield remains high even after prolonged process duration.