Abstract:
The present invention relates to the use of an olefin-carboxylic acid copolymer, wherein the copolymer comprises at least one free carboxylic acid side group, or of a nitrogen compound quaternized with epoxide in the presence of an olefin-carboxylic acid copolymer, wherein the copolymer comprises at least one free carboxylic acid side group, as a fuel additive or lubricant additive; to processes for preparing additives of this kind, and to fuels and lubricants additized therewith; such as, more particularly, as a detergent additive; for reduction or prevention of deposits in the injection systems of direct injection diesel engines, especially in common rail injection systems, for reduction of the fuel consumption of direct injection diesel engines, especially of diesel engines with common rail injection systems, and for minimization of power loss in direct injection diesel engines, especially in diesel engines with common rail injection systems; and as an additive for gasoline fuels, especially for operation of DISI engines.
Abstract:
The use of an organic compound as cleavable additive, preferably as cleavable surfactant, in the modification and/or treatment of at least one surface of a semiconductor substrate is described. Moreover, it is described a method of making a semiconductor substrate, comprising contacting at least one surface thereof with an organic compound, or with a composition comprising it, to treat or modify said surface, cleaving said organic compound into a set of fragments and removing said set of fragments from the contacted surface. More in particular, a method of cleaning or rinsing a semiconductor substrate or an intermediate semiconductor substrate is described. In addition, a compound is described which is suitable for the uses and methods pointed out above and which preferably is a cleavable surfactant.
Abstract:
The present invention relates to a method of producing mineral oil from an underground mineral oil deposit, in which an aqueous saline surfactant formulation comprising a surfactant mixture, for the purpose of lowering the interfacial tension between oil and water to
Abstract:
Use of a reaction product of saturated or unsaturated aliphatic mono- or polycarboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils which comprise additives with detergent action. A Fuel additive concentrate comprising the said reaction product, certain additives with detergent action and optionally dehazers, cetane number improvers and solvents or diluents.
Abstract:
The present invention relates to a method for the production of crude oil from subterranean, oil-bearing formations comprising at least the following steps of providing an aqueous surfactant composition comprising water and a surfactant mixture, injecting said surfactant composition into the subterranean, oil-bearing formation through at least one injection well, thereby reducing the crude oil-water interfacial tension to less than 0.1 mN/m, and withdrawing crude oil from the formation through at least one production well, wherein the surfactant mixture comprises at least a surfactant (A) having the general formula R1—O—(CH2CH(R2)O)a—(CH2CH(CH3)O)b—(CH2CH2O)c—R3—Y−M+ (I) and a solubility enhancer (B) having the general formula R4—O—(CH2CH(CH3)O)x—(CH2CH2O)y—R3—Y−M+ (II), wherein R1 to R4, a, b, c, x, y, Y and M have the meaning as defined the the description and claims. The invention further relates to said aqueous surfactant composition and methods for preparing the same as well as the use of solubility enhancer (B) for enhancing the solubility of anionic surfactant (A).
Abstract:
The present invention relates to a method for the production of crude oil from subterranean, oil-bearing formations comprising at least the following steps of providing an aqueous surfactant composition comprising water and a surfactant mixture, injecting said surfactant composition into the subterranean, oil-bearing formation through at least one injection well, thereby reducing the crude oil-water interfacial tension to less than 0.1 mN/m, and withdrawing crude oil from the formation through at least one production well, wherein the surfactant mixture comprises at least a surfactant (A) having the general formula R1—O—(CH2CH(R2)O)a-(CH2CH(CH3)O)b— (CH2CH2O)c—R3—Y− M+ (I) and a solubility enhancer (B) having the general formula R4—O—(CH2CH(CH3)O)x—(CH2CH2O)y—R3—Y− M+ (II), wherein R1 to R4, a, b, c, x, y, Y and M have the meaning as defined the the description and claims. The invention further relates to said aqueous surfactant composition and methods for preparing the same as well as the use of solubility enhancer (B) for enhancing the solubility of anionic surfactant (A).
Abstract:
Use of a reaction product of saturated or unsaturated aliphatic mono- or polycarboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils which comprise additives with detergent action. A Fuel additive concentrate comprising the said reaction product, certain additives with detergent action and optionally dehazers, cetane number improvers and solvents or diluents.
Abstract:
The present invention relates to a method of producing mineral oil from underground mineral oil deposits, in which an aqueous saline surfactant formulation comprising a surfactant mixture, for the purpose of lowering the interfacial tension between oil and water to
Abstract:
A method for mineral oil production by means of CO2 flooding, in which liquid or supercritical CO2 and at least one alk(en)yl polyglucoside are injected through at least one injection well into a mineral oil deposit and mineral oil is withdrawn from the deposit through at least one production well. The alk(en)yl polyglucoside is preferably dissolved in the CO2 phase. A method for mineral oil production by means of CO2 flooding, in which mixtures of the alk(en)yl polyglucosides with alk(en)yl polyalkoxylates or anionic surfactants are used.
Abstract:
Process for treating subterranean oil-bearing formations comprising carbonate rocks with an aqueous composition comprising cationic ammonium salts comprising four hydrocarbon radicals wherein at least one of the hydrocarbon radicals is substituted by an OH-group. The process may be a process for enhanced oil recovery, fracturing, acidizing or antiscale treatment.