Abstract:
The use of an alkoxylated polytetrahydrofurane of formula wherein m, m′, n, n′, p, p′ and k are integers in the range of ≧1, R1 denotes an unsubstituted linear or branched alkyl radical, R2 denotes —CH2—CH3, and R3 denotes a hydrogen atom or —CH3, as an additive in a fuel for reducing fuel consumption in the operation of an internal combustion engine with this fuel.
Abstract:
The use of a complex ester obtainable by esterification reaction between aliphatic linear or branched C2- to C12-dicarboxylic acids, aliphatic linear or branched polyhydroxy alcohols with 3 to 6 hydroxyl groups, and, as chain stopping agents, aliphatic linear or branched C1- to C30-monocarboxylic acids or aliphatic linear or branched monobasic Ci- to C30-alcohols, as an additive in a fuel.
Abstract:
The present invention relates to the use of amines and/or Mannich adducts as detergents and/or dispersants in fuel and lubricant compositions for direct-injection gasoline engines. The invention further relates to fuel and lubricant compositions which comprise at least one such Mannich adduct, and also a bisaminoalkylated Mannich adduct.
Abstract:
Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils and gasoline fuels which comprise additives with detergent action. A Fuel additive concentrate comprising the said hydrocarbyl-substituted dicarboxylic acid, certain additives with detergent action and optionally other customary additives and solvents or diluents.
Abstract:
Use of a tertiary hydrocarbyl amine with C1- to C20-hydrocarbyl residues, the overall number of carbon atoms not exceeding 30, as an additive in gasoline for reducing injector nozzle fouling and modifying friction in direct injection spark ignition engines. A fuel additive composition essentially comprising nitrogen-containing dispersants, carrier oils, the above tertiary hydrocarbyl amines and optionally further friction modifiers. A fuel composition comprising a major amount of gasoline and a minor amount of the above fuel additive composition.
Abstract:
The present invention is in the field of processes for the generation of thin inorganic films on substrates. In particular, the present invention relates to a process comprising bringing a compound of general formula (I) into the gaseous or aerosol state Lm—M—Xn (I) and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein R is independent of each other hydrogen, an alkyl group, an alkenyl group, an aryl group or a silyl group, p is 1, 2 or 3, M is Ni or Co, X is a σ-donating ligand which coordinates M, wherein if present at least one X is a ligand which coordinates M via a phosphor or nitrogen atom, m is 1 or 2 and n is 0 to 3.
Abstract:
Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils and gasoline fuels which comprise additives with detergent action. A Fuel additive concentrate comprising the said hydrocarbyl-substituted dicarboxylic acid, certain additives with detergent action and optionally other customary additives and solvents or diluents.
Abstract:
The use of a complex ester obtainable by esterification reaction between aliphatic linear or branched C2- to C12-dicarboxylic acids, aliphatic linear or branched polyhydroxy alcohols with 3 to 6 hydroxyl groups, and, as chain stopping agents, aliphatic linear or branched C1- to C30-monocarboxylic acids or aliphatic linear or branched monobasic C1- to C30-alcohols, as an additive in a fuel for minimization of power loss in the operation of an internal combustion engine with this fuel.
Abstract:
The use of a polyalkylene glycol of formula HO-(A-O)p—(CH2CH2—O)m-(A-O)q—H wherein A is a C3- to C20-alkylene group or a mixture of such alkylene groups, m is a number of from 2 to 100 and p and q are each numbers of from 1 to 100, as an additive in a fuel.