Abstract:
The invention relates to a process for obtaining isobutene from an isobutene containing C4-hydrocarbon mixture (1) in a plant comprising an etherification unit (3), a first distillation unit (5), an ether cleavage unit (10) and a second distillation unit (12), the process comprising:(a) contacting the C4-hydrocarbon mixture (1) with a primary alcohol (2) and reacting the mixture with the primary alcohol in the presence of an acidic catalyst to form the corresponding alkyl tert-butyl ether in the etherification unit (3); (b) distilling the reaction mixture (4) from the etherification unit (3) in the first distillation unit (5), a C4-hydrocarbon raffinate being withdrawn as the overhead product (6), and the alkyl tert-butyl ether being withdrawn as the bottom product (7);(c) vaporizing the bottom product from the first distillation unit (5) in an evaporator (8) obtaining a vapor stream (9);(d) reacting the vapor stream (9) of step (c) in the presence of an acidic catalyst obtaining isobutene and the primary alcohol as reaction products in the ether cleavage unit (10);(e) distilling the reaction mixture (11) from the ether cleavage unit (10) in the second distillation unit (12), isobutene being withdrawn as the overhead product (13), the primary alcohol and diisobutene being withdrawn as the bottom product (14) and being recycled to the etherification unit (3); wherein a purge stream (15) containing high boiling components with a normal boiling point higher than that of the alkyl tert-butyl ether is withdrawn from the evaporator (8) in step (c).
Abstract:
The invention relates to a process for obtaining isobutene from an isobutene containing C4-hydrocarbon mixture (1) in a plant comprising an etherification unit (3), a first distillation unit (5), an ether cleavage unit (8) and a second distillation unit (10), the process comprising: (a) contacting the C4-hydrocarbon mixture (1) with a primary alcohol (2) and reacting the mixture with the primary alcohol in the presence of an acidic catalyst to form the corresponding alkyl tert-butyl ether as an intermediate product and diisobutene as a by-product in the etherification unit (3); (b) distilling the reaction mixture (4) from the etherification unit (3) in the first distillation unit (5), a C4-hydrocarbon raffinate being withdrawn as the overhead product (6), the alkyl tert-butyl ether and diisobutene being withdrawn as the liquid or vaporous bottom product (7), and vaporizing the bottom product (7) if it is withdrawn as a liquid; (c) reacting the vaporous bottom product (7) in the presence of an acidic catalyst obtaining isobutene and the primary alcohol as reaction products in the ether cleavage unit (8); (d) distilling the reaction mixture (9) from the ether cleavage unit (8) in the second distillation unit (10), isobutene being withdrawn as the overhead product (11), the primary alcohol and diisobutene being withdrawn as the bottom product (12) and being recycled to the etherification unit (3); the plant further comprising a byproduct separation unit (15) being fed by a bottom purge stream (13) of the first distillation unit (5) and/or by a part of the bottom product of the second distillation unit (10), this feed stream (14) being split up in at least three byproduct streams wherein a first byproduct stream (16) is rich in diisobutene, a second byproduct stream (17) is rich in the primary alcohol, and a third byproduct stream (18) is rich in components with a normal boiling point higher than 110 °C.
Abstract:
The invention relates to a process for starting up a plant for removing isobutene from an isobutene-containing C4-hydrocarbon mixture, the plant comprising an etherification unit containing moist acidic ion exchange resin, a first distillation unit, an ether cleavage unit, and a second distillation unit. The invention further relates to a process for shutting down the plant from a stationary operation mode.
Abstract:
The invention relates to a process for obtaining isobutene from an isobutene containing C4-hydrocarbon mixture (1) in a plant comprising an etherification unit (3), a first distillation unit (5), an ether cleavage unit (8) and a second distillation unit (10), the process comprising: (a) contacting the C4-hydrocarbon mixture (1) with a primary alcohol (2) and reacting the mixture with the primary alcohol in the presence of an acidic catalyst to form the corresponding alkyl tert-butyl ether as an intermediate product and diisobutene as a by-product in the etherification unit (3); (b) distilling the reaction mixture (4) from the etherification unit (3) in the first distillation unit (5), a C4-hydrocarbon raffinate being withdrawn as the overhead product (6), the alkyl tert-butyl ether and diisobutene being withdrawn as the liquid or vaporous bottom product (7), and vaporizing the bottom product (7) if it is withdrawn as a liquid; (c) reacting the vaporous bottom product (7) in the presence of an acidic catalyst obtaining isobutene and the primary alcohol as reaction products in the ether cleavage unit (8); (d) distilling the reaction mixture (9) from the ether cleavage unit (8) in the second distillation unit (10), isobutene being withdrawn as the overhead product (11), the primary alcohol and diisobutene being withdrawn as the bottom product (12) and being recycled to the etherification unit (3); the plant further comprising a byproduct separation unit (15) being fed by a bottom purge stream (13) of the first distillation unit (5) and/or by a part of the bottom product of the second distillation unit (10), wherein a diisobutene product stream rich in diisobutene is separated from this feed stream (13, 14).
Title translation:YTTRIUMHALTIGER催化剂用于高温KOHLENDIOXIDHYDRIERUNG,加之高温KOHLENDIOXIDHYDRIERUNG及改造和/或高温KOHLENDIOXIDHYDRIERUNG改革和方法,结合高温KOHLENDIOXIDHYDRIERUNG和重整和/或改革
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Katalysators für die Hochtemperatur- Verfahren (i) Kohlendioxidhydrierung, (ii) kombinierten Hochtemperatur Kohlendioxidhydrierung und Reformierung und/oder (iii) Reformierung von kohlenwasserstoffhaltigen Verbindungen und/oder Kohlenstoffdioxid und die Verwendung des erfindungsgemäßen Katalysators in Verbindung mit der Reformierung und/oder Hydrierung von Kohlenwasserstoffen, vorzugsweise Methan, und/oder von Kohlenstoffdioxid. Zur Herstellung des Katalysators wird eine Aluminiumquelle, die vorzugsweise eine wasserlösliche Vorläuferquelle umfasst, mit einer yttriumhaltigen Metallsalzlösung in Kontakt gebracht, getrocknet und kalziniert. Die Metallsalzlösung weist neben den Yttriumspezies zumindest ein Element aus der Gruppe Kobalt, Kupfer, Nickel, Eisen, Zink auf.
Abstract:
Die Erfindung betrifft nickelhexaaluminathaltigen Katalysator zur Reformierung von Kohlenwasserstoffen, vorzugsweise Methan, in Gegenwart von Kohlendioxid umfassend Hexaaluminat mit Anteil im Bereich von 65 bis 95 Gew.-%, vorzugweise von 70 bis 90 Gew.-%, und kristalline, oxydische Nebenphase aus der Gruppe LaAlO 3 , SrAl 2 O 4 und/oder BaAl 2 O 4 im Bereich von 5 bis 35 Gew.-%, vorzugweise 10 bis 30 Gew.-%. Die BET-Oberfläche des Katalysators ist ≥ 5 m 2 /g, vorzugsweise ≥ 10 m 2 /g. Der molare Nickelgehalt des Katalyators ist ≤ 3 mol-%, vorzugsweise ≤ 2,5 mol-% und weiter vorzugsweise ≤ 2 mol-%. Vorzugsweise handelt es sich bei den Zwischenebenenkationen um Ba und/oder Sr. Das Verfahren zur Herstellung des Katalysators umfasst die Schritte: (i) Herstellung einer Mischung aus Metallsalzen, vorzugsweise Nitratsalze von Ni sowie Sr und/oder La, und einer nanopartikulären Aluminiumquelle, (ii) Abformung und (iii) Kalzinierung. Der erfindungsgemäße Katalysator wird in einem Reformierungsverfahren mit Kohlenwasserstoffen, vorzugweise Methan, und CO 2 in Kontakt gebracht. Vorzugsweise bei einer Temperatur > 800 °C. Der Katalysator ist auch durch strukturelle und bevorzugte Eigenschaften des Nickels gekennzeichnet, dass Nickelpartikel zumeist tetragonale Ausprägung aufweisen und die Partikeln ≤ 50 nm, vorzugsweise ≤ 40 nm und insbesondere vorzugsweise ≤ 30 nm sind und feindispergiert als Aufwachsung auf Hexaaluminatpartikeln vorliegen. Der Katalysator weist nur eine sehr geringe Tendenz zur Bildung von Koks auf.
Abstract:
The invention relates to a nickel hexaaluminate-containing catalyst for reforming hydrocarbons, preferably methane, in the presence of carbon dioxide, comprising hexaaluminate in a proportion ranging from 65 to 95 wt.%, preferably from 70 to 90 wt.%, and a crystalline oxide secondary phase from the group consisting of LaAlO 3 , SrAl 2 O 4 , and/or BaAl 2 O 4 in a proportion ranging from 5 to 35 wt.%, preferably 10 to 30 wt.%. The BET surface of the catalyst is ≥ 5 m 2 /g, preferably ≥ 10 m 2 /g, the molar nickel content of the catalyst is ≤ 3 mol-%, preferably ≤ 2.5 mol-% and more preferably ≤ 2 mol-%, and the intermediate cations are preferably Ba and/or Sr. The method for producing the catalyst has the following steps: (i) producing a mixture of metal salts, preferably nitrate salts of Ni and Sr and/or La, and a nano-particulate aluminum source, (ii) molding, and (iii) calcining. In a reforming method, the catalyst according to the invention is brought into contact with hydrocarbons, preferably methane, and CO 2 , preferably at a temperature of > 800 °C. The catalyst is also characterized by preferable structural properties of the nickel, wherein the nickel particles mostly have a tetragonal shape, and the particles are ≤ 50 nm, preferably ≤ 40 nm and preferably ≤ 30 nm in particular, and are provided in a finely dispersed manner as a growth on hexaaluminate particles. The catalyst has only a very low tendency to form coke.
Abstract:
The invention relates to a process for obtaining isobutene from an isobutene containing C4-hydrocarbon mixture (1) in a plant comprising an etherification unit (3), a first distillation unit (5), an ether cleavage unit (8) and a second distillation unit (10), the process comprising: (a) contacting the C4-hydrocarbon mixture (1) with a primary alcohol (2) and reacting the mixture with the primary alcohol in the presence of an acidic catalyst to form the corresponding alkyl tert-butyl ether as an intermediate product and diisobutene as a byproduct in the etherification unit (3); (b) distilling the reaction mixture (4) from the etherification unit (3) in the first distillation unit (5), a C4-hydrocarbon raffinate being withdrawn as the overhead product (6), the alkyl tert-butyl ether and diisobutene being withdrawn as the liquid or vaporous bottom product (7), and vaporizing the bottom product (7) if it is withdrawn as a liquid; (c) reacting the vaporous bottom product (7) in the presence of an acidic catalyst obtaining isobutene and the primary alcohol as reaction products in the ether cleavage unit (8); (d) distilling the reaction mixture (9) from the ether cleavage unit (8) in the second distillation unit (10), isobutene being withdrawn as the overhead product (11), the primary alcohol and diisobutene being withdrawn as the bottom product (12) and being recycled to the etherification unit (3); the plant further comprising a byproduct separation unit (15) being fed by a bottom purge stream (13) of the first distillation unit (5) and/or by a part of the bottom product of the second distillation unit (10), wherein a diisobutene product stream rich in diisobutene is separated from this feed stream (13, 14).