Abstract:
According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surfaces(s) of the pore(s).
Abstract:
The present invention is a microchannel mass exchanger (100) having a first plurality of inner thin sheets (106, 116, 200, 300) and a second plurality of outer thin sheets (110, 118, 204, 302, 504, 510). The inner thin sheets (106, 118, 200, 300) each have a solid margin (108) around a circumference, the solid margin (108) defining a slot (104, 508) through the inner thin sheet (106, 116, 200, 300) thickness. The outer thin sheets (110, 118, 204, 302, 504, 510) each have at least two header holes (112, 202) on opposite ends and when sandwiching an inner thin sheet (106, 116, 200, 300). The outer thin sheets (110, 118, 204, 302, 504, 510) further have a mass exchange medium (400, 500). The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Abstract:
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Abstract:
According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surfaces(s) of the pore(s).
Abstract:
According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surfaces(s) of the pore(s).
Abstract:
The present invention is a microchannel mass exchanger (100) having a first plurality of inner thin sheets (106, 116, 200, 300) and a second plurality of outer thin sheets (110, 118, 204, 302, 504, 510). The inner thin sheets (106, 118, 200, 300) each have a solid margin (108) around a circumference, the solid margin (108) defining a slot (104, 508) through the inner thin sheet (106, 116, 200, 300) thickness. The outer thin sheets (110, 118, 204, 302, 504, 510) each have at least two header holes (112, 202) on opposite ends and when sandwiching an inner thin sheet (106, 116, 200, 300). The outer thin sheets (110, 118, 204, 302, 504, 510) further have a mass exchange medium (400, 500). The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange mediu m.
Abstract:
A method of making a microchannel mass exchanger, comprising the steps of: (a) forming at least one inner sheet having a solid margin around a circumference, the solid margin defining a slot through the entire thickness of the inner sheet, (b) forming at least one outer sheet having at least two header holes positioned within the solid margin and positioned at opposite ends of a slot length, wherein the one inner sheet is placed adjacent to the outer sheet, the solid margin sealably spacing the outer sheet and the outer sheets defining at least one longitudinal wall of a flow channel having a length parallel to a sheet length, wherein a fluid enters through one of the header holes into the slot to flow in a direction parallel or longitudinal to the length of the flow channel and exits through another of the header holes; with the proviso that at least one outer sheet comprises a mass transfer medium within the solid margin; (c) stacking the at least one inner sheet in contact with the at least one outer sheets into a stack and placing an end block or outer sheet on the at least one inner sheet as a pre-bonded assembly; and (e) bonding the pre-bonded assembly into a microchannel mass exchanger.
Abstract:
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.