Abstract:
A nontoxic deicing/anti-icing fluid includes a biobased freezing point depressant, a surfactant, an antioxidant, and water. The fluid has an LD50 greater an about 10,000 mg/L. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a vinylpyrrolidone polymer having a molecular weight between about 10,000 and about 700,000, and water. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a nonionic surfactant selected from the polyoxyalkylene ethers, an antioxidant, and water. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a surfactant, a food grade material that functions as an antioxidant, and water. A further deicing/anti-icing fluid includes a biobased freezing point depressant, a material that functions as both a buffer and a freezing point depressant, and water.
Abstract:
The present invention provides a process for preparation of low molecular weight polyols from high molecular weight polyols in a hydrogenolysis reaction under elevated temperature and hydrogen pressure. The process comprises providing in a reaction mixture the polyols, a base, and a metal catalyst prepared by depositing a transition metal salt on an inert support, reducing the metal salt to the metal with hydrogen, and passivating the metal with oxygen, and wherein the catalyst is reduced with hydrogen prior to the reaction. In particular, the process provides for the preparation of glycerol, propylene glycol, and ethylene glycol from sugar alcohols such as sorbitol or xylitol. In a preferred process, the metal catalyst comprises ruthenium which is deposited on an alumina, titania, or carbon support, and the dispersion of the ruthenium on the support increases during the hydrogenolysis reaction.
Abstract:
Un método de hidrogenolisis comprendiendo reaccionar al menos un azúcar o alcohol de azúcar seleccionado deribosa, glucosa, galactosa, talosa, maltosa, sacarosa, altrose, manosa, gulosa, idosa, lixosa, xilitol y arabinitol conhidrógeno en agua en presencia de un catalizador comprendiendo un soporte de carbono, renio y al menos un metaladicional, el renio estando presente en el catalizador en una cantidad de desde 0.5% a 5% por peso; a unatemperatura de al menos 120°C para producir propilenglicol y etilenglicol .
Abstract:
The present invention is a deicing/anti-icing fluid comprising: a biobased freezing point depressant, a vinylpyrrolidone polymer having a molecular weight between about 10,000 and about 700,000 and water.
Abstract:
The present invention is a deicing/anti-icing fluid comprising: a biobased freezing point depressant, a vinylpyrrolidone polymer having a molecular weight between about 10,000 and about 700,000 and water.
Abstract:
Methods for hydrogenolysis are described which use a Re-containing multimetallic catalyst for hydrogenolysis of both C-O and C-C bonds. Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 6-carbon sugar, sugar alcohol, or glycerol are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol.
Abstract:
A nontoxic deicing/anti-icing fluid includes a biobased freezing point depressant, a surfactant, an antioxidant, and water. The fluid has an LD50 greater than about 10,000 mg/L. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a vinylpyrrolidone polymer having a molecular weight between about 10,000 and about 700,000, and water. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a nonionic surfactant selected from the polyoxyalkylene ethers, an antioxidant, and water. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a surfactant, a food grade material that functions as an antioxidant, and water. A further deicing/anti-icing fluid includes a biobased freezing point depressant, a material that functions as both a buffer and a freezing point depressant, and water.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Abstract:
THE PRESENT INVENTION PROVIDES METHODS FOR MAKING N-METHYLPYRROLIDINE AND ANALOGOUS COMPOUNDS VIA HYDROGENATION. NOVEL CATALYSTS FOR THIS PROCESS, AND NOVEL CONDITIONS/YIELDS ARE ALSO DESCRIBED. OTHER PROCESS IMPROVEMENTS MAY INCLUDE EXTRACTION AND HYDROLYSIS STEPS. SOME PREFERRED REACTIONS TAKE PLACE IN THE AQUEOUS PHASE. STARTING MATERIALS FOR MAKING N-METHYLPYRROLIDINE MAY INCLUDE SUCCINIC ACID, N-METHYLSUCCINIMIDE, AND THEIR ANALOGS.