Abstract:
The present invention provides a method for preparing a suspension of a pharmaceutically-active compound, the solubility of which is greater in a water-miscible first organic solvent than in a second solvent which is aqueous. The process includes the steps of : (i) dissolving a first quantity of the pharmaceutically-active compound in the water-miscible first organic solvent to form a first solution ; (ii) mixing the first solution with the second solvent to precipitate the pharmaceutically-active compound ; and (iii) seeding the first solution or the second solvent or the presuspension.
Abstract:
The present invention relates to a dispersion of an active agent, which includes a multiphase system of an organic phase and an aqueous phase. The agent, preferably poorly water soluble, possesses surface active properties and itself serves as a dispersantor a stabilizer for the dispersion. The dispersion is suitable for pharmaceutical, veterinary, cosmetic, and agricultural applications, and is suitable for in vivo delivery, particularly by parenteral routes.
Abstract:
The present invention provides a reference electrode solution containing ammonium salts and phosphonium salts for the potentiometric measurement of pH and method of using the same. The use of the ammonium salts and the phosphonium salts to replace potassium chloride or sodium chloride as reference electrolytes in a standard reference electrode minimizes the formation of precipitates in sample solutions containing cation-sensitive compounds. Disruption of ion flow through the reference electrode is eliminated, and accurate pH measurements may be obtained in solutions that contain compounds having a strong affinity for hard cations.
Abstract:
This invention pertains to the formulation of small-particle suspensions of anticonvulsants, particularly carbamazepine, for pharmaceutical use. This invention also pertains to the formulation of a small-particle suspensions of immunosuppressive agents, particularly cyclosporin, for pharmaceutical use. The particles are coated with one or more surface modifiers.
Abstract:
The present invention provides a method of preparing particles with polymorph and size control of a pharmaceutical compound, the method including the steps of: (1) providing pharmaceutical compound in a first phase; (2) seeding the compound; (3) causing a phase change in the pharmaceutical compound to a second phase of a desired polymorphic form; and (4) wherein the mean particle size of the particles is less than 7µm. The present invention further provides a polymorphic form of itraconazole.
Abstract:
A premix parenteral solution for intravenous administration having amiodarone, as an active ingredient, solubilized in a solution of water for injection and about 0.4 - 12 mg/ml of a non-ionic surfactant to a concentration range of from 0.2 to 6 mg/ml is disclosed. The solution optionally may include an osmotic agent. No dilution of the solution is required before administering to a patient and the sterile packaged solution has an initial pH within the range of from about 2.9 to about 3.2, preferably about 3.1. Additionally, a method for producing an amiodarone solution suitable for intravenous administration is further disclosed.
Abstract:
The present invention provides an amiodarone parenteral solution suitable for intravenous administration without the necessity of dilution. The parenteral solution has an amiodarone concentration from 0.2 to 10 mg/ml and a buffer solution selected from the group consisting of lactate buffer, methanesulfonate buffer, or combinations thereof, the solution having a pH within the range from approximately 2.5 - 4.5.
Abstract:
This application discloses devices, articles, and methods useful for producing lyophilized cakes of solutes. The devices and articles provide for a method of freezing liquid solutions of the solute by the top and the bottom of the solution simultaneously and at approximately the same rate. The as frozen solution can then provide a lyophilized cake of the solutes with large and uniform pores.
Abstract:
A method for preparing submicron sized particles of a pharmaceutically-active compound, the solubility of which is greater in a water-miscible first solvent than in a second solvent which is aqueous is disclosed, wherein the process comprises the steps of: (i) dissolving the pharmaceutically-active compound in the water-miscible first solvent to form a solution, the first solvent being selected from the group consisting of N methyl-2-pyrrolidinone, 2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, lactic acid, methanol, ethanol, isopropanol, 3-pentanol, n-propanol, glycerol, butylene glycol, ethylene glycol, polypropylene glycol, mono- and diacylated monoglycerides, dimethyl isosorbide, acetone, dimethylformamide, 1,4-dioxane, ethyl acetate, propyl acetate, polyethylene glycol, polyethylene glycol esters, polyethylene glycol sorbitans, polyethylene glycol monoalkyl ethers, polypolypropylene glycol, polypropylene alginate, polypolypropylene glycol-10 butanediol, polypolypropylene glycol-10 methyl glucose ether, polypolypropylene glycol-20 methyl glucose ether, polypolypropylene glycol-15 stearyl ether, polypolypropylene glycol dicaprylate, polypropylene glycol dicaprate, polypropylene glycol laurate; (ii) mixing the solution with the second solvent to define a pre-suspension; and (iii) adding energy to the pre-suspension to form particles having an average effective particle size of less than about 2 micron, and said adding energy step comprises homogenization, counter-current flow homogenization, microfluidization or sonication.