Abstract:
An improved optical flow cell adapted for use in a flow cytometer for differentiating formed bodies (e.g., blood cells) in liquid suspensions. Preferably manufactured by assembling, aligning, and optically joining at least two elements made from transparent material, the improved flow cell has a seamless internal flow channel of preferably non-circular cross-section in a cylindrical first element through which prepared samples can be metered and an independent second element having an external envelope suited to acquisition of optical parameters from formed bodies in such suspensions, the second element being conforming and alignable to the first element so that non-axisymmetric refractive effects on optical characterizing parameters of formed bodies passing through the flow channel in the first element may be minimized before the two elements are optically joined and fixed in working spatial relationship.
Abstract:
A pipelining assembly for use in a blood analyzing instrument, methods for performing parallel pipelining functions, and methods for processing a plurality of prepared blood samples through a blood analyzing instrument. The pipelining assembly presented generally includes a first sample preparation chamber, a first queuing chamber in fluid communication with the first sample preparation chamber, and a first control valve between the first sample preparation chamber and the first queuing chamber. The pipelining assembly further includes a second sample preparation chamber, a second queuing chamber in fluid communication with the second sample preparation chamber, and a second control valve between the second sample preparation chamber and the second queuing chamber. An analysis chamber is provided to receive first and second prepared blood samples from the in first and second queuing chambers. The presented methods include steps for repeated processing of prepared blood samples through the blood analyzing instrument.
Abstract:
Apparatus (20) for aspirating and dispensing liquid samples in an analytical instrument, e g, a hematology instrument, includes a liquid-sampling valve (LSV) that, while operating to segment and position for dispensing one or more precise volumes of a liquid sample that has been aspirated into the valve by a pump (30), simultaneously enables the apparatus to be operated in an aspirate/dispense (suck-and-spit) mode in which a liquid sample can be selectively driven through the valve in opposite directions by a pump, e g, a syringe pump.
Abstract:
A pipelining assembly for use in a blood analyzing instrument, methods for performing parallel pipelining functions, and methods for processing a plurality of prepared blood samples through a blood analyzing instrument. The pipelining assembly presented generally includes a first sample preparation chamber, a first queuing chamber in fluid communication with the first sample preparation chamber, and a first control valve between the first sample preparation chamber and the first queuing chamber. The pipelining assembly further includes a second sample preparation chamber, a second queuing chamber in fluid communication with the second sample preparation chamber, and a second control valve between the second sample preparation chamber and the second queuing chamber. An analysis chamber is provided to receive first and second prepared blood samples from the in first and second queuing chambers. The presented methods include steps for repeated processing of prepared blood samples through the blood analyzing instrument.
Abstract:
An improved optical flow cell adapted for use in a flow cytometer for differentiating formed bodies (e.g., blood cells) in liquid suspensions. Preferably manufactured by assembling, aligning, and optically joining at least two elements made from transparent material, the improved flow cell has a seamless internal flow channel of preferably non-circular cross-section in a cylindrical first element through which prepared samples can be metered and an independent second element having an external envelope suited to acquisition of optical parameters from formed bodies in such suspensions, the second element being conforming and alignable to the first element so that non-axisymmetric refractive effects on optical characterizing parameters of formed bodies passing through the flow channel in the first element may be minimized before the two elements are optically joined and fixed in working spatial relationship.