Abstract:
A rotor blade of a helicopter is presented. In an embodiment, the rotor blade (100) includes a body (105) ; and a heating mat (301) arranged in the body (105) and configured to supply heat to said body. The heating mat (301) includes a first (505) plurality of fibers (400) and a second (510) plurality of fibers (400) electrically connected to the first plurality of fibers. The first plurality of fibers define a positive angle smaller than about +45° relative to a first direction perpendicular to a longitudinal direction of the body. The second plurality of fibers define a negative angle greater than about -45° relative to the first direction.
Abstract:
In some embodiments, an aircraft includes a flying frame having an airframe, a propulsion system attached to the airframe and a flight control system operably associated with the propulsion system wherein, the flying frame has a vertical takeoff and landing mode and a forward flight mode. A pod assembly is selectively attachable to the flying frame such that the flying frame is rotatable about the pod assembly wherein, the pod assembly remains in a generally horizontal attitude during vertical takeoff and landing, forward flight and transitions there between.
Abstract:
A tiltrotor aircraft includes a fuselage, a wing member extending from the fuselage, an engine disposed relative to the wing member and a proprotor mechanically coupled to the engine. The proprotor includes a plurality of proprotor blade assemblies each including a spar and a sheath extending spanwise along the spar forming the leading edge of the proprotor blade assembly. The spar has a root section, a main section and a tip section. The spar has a generally oval cross section at radial stations along the main section and a first edge having a structural bias relative to a generally oppositely disposed second edge at the radial stations along the main section.
Abstract:
A method of making a composite core can include configuring a plurality of mandrels to have a desired thermal expansion characteristic, placing a composite material around each mandrel, placing the plurality of mandrels in a tool, the tool being configured to constrain the plurality of mandrels as the mandrels experience a thermal expansion, heating the mandrels so that the mandrels thermally expand, thereby applying a pressure to the composite material during a cure cycle, and then cooling and separating the mandrels from the composite core. The mandrel is configured as an internal form for making a tube member of a composite core.
Abstract:
A method of manufacturing a composite core including wrapping each of a plurality of mandrels with a composite material and stacking the plurality of mandrels wrapped with the composite material in a tool. A heated fluid may be moved through an interior of the plurality of mandrels to controllably heat the composite material in a curing process. A pressure may be controllably applied to the tool with a bladder during a curing process. A tooling system for manufacturing a composite core is also discussed.
Abstract:
A rotor blade of a helicopter is presented. In an embodiment, the rotor blade (100) includes a body (105) ; and a heating mat (301) arranged in the body (105) and configured to supply heat to said body. The heating mat (301) includes a first (505) plurality of fibers (400) and a second (510) plurality of fibers (400) electrically connected to the first plurality of fibers. The first plurality of fibers define a positive angle smaller than about +45~ relative to a first direction perpendicular to a longitudinal direction of the body. The second plurality of fibers define a negative angle greater than about -45~ relative to the first direction.
Abstract:
A tiltrotor aircraft includes a fuselage, a wing member extending from the fuselage, an engine disposed relative to the wing member and a proprotor mechanically coupled to the engine. The proprotor includes a plurality of proprotor blade assemblies each including a spar and a sheath extending spanwise along the spar forming the leading edge of the proprotor blade assembly. The spar has a root section, a main section and a tip section. The spar has a generally oval cross section at radial stations along the main section and a first edge having a structural bias relative to a generally oppositely disposed second edge at the radial stations along the main section.
Abstract:
An aircraft (10) includes a flying frame (12) having an airframe (26), a propulsion system (34) attached to the airframe (26) and a flight control system (68) operably associated with the propulsion system (34) wherein, the flying frame (12) has a vertical takeoff and landing mode and a forward flight mode. A pod assembly (70) is selectively attachable to the flying frame (12) such that the flying frame (12) is rotatable about the pod assembly (70) wherein, the pod assembly (70) remains in a generally horizontal attitude during vertical takeoff and landing, forward flight and transitions therebetween.
Abstract:
A method of manufacturing a composite core can include: wrapping a mandrel in a mandrel wrapping process by securing a mandrel with a winding jig; orienting the composite material at a wrap angle to the mandrel; and depositing the composite material around a circumference of the mandrel. The method can further include assembling the wrapped mandrels in a tool and applying a pressure to the composite material during a curing cycle.