Abstract:
A cutting device that uses electromagnetic energy to create a cutting effect on or within a target surface is disclosed. The cutting device includes an optic guide and three or more nozzles located on a body member. The nozzles direct a volume of particles of air and liquid away from the body member, and the volume of particles of air and liquid can facilitate one or more of a disruptive effect and a cooling effect on the target surface. Energy emitted from the optic guide can interact with the particles to impart disruptive forces onto or within a target surface.
Abstract:
A radiation emitting apparatus is disclosed that emits a substantially homogenous beam of radiation from an irregularly shaped output end. As described herein, a radiation emitting apparatus includes a bundled fiberguide coupled to an energy distribution tuner. The bundled fiber guide is coupled to the energy distribution tuner to receive a substantially uniform distribution of high power energy. The bundled fiber guide is configured to distribute the energy to emit a substantially uniform distribution of lower power energy toward a target surface, such as a body surface. The bundled fiber guide may include a plurality of fused optic fibers, a plurality of beam splitting mirror elements, or tapered waveguides.
Abstract:
An endodontic probe is used to perform disinfection procedures on target tissues within root canal passages and tubules. The endodontic probe can include an electromagnetic radiation emitting fiber optic tip having a distal end and a radiation emitting region disposed proximally of the distal end. According to one aspect, the endodontic probe can include a porous structure that encompasses a region of the fiber optic tip excluding the radiation emitting region and that is loaded with biologically active particles, cleaning particles, biologically-active agents, or cleaning agents for delivery from the porous structure onto the target tissues. Another aspect can include provision of the endodontic probe with an adjustable channel-depth indicator, which encompasses a region of the fiber optic tip besides the radiation emitting region and which is movable in proximal and distal directions along a surface of the fiber optic tip to facilitate the provision of depth-of-insertion information.
Abstract:
An apparatus having an excitation source that includes at least one laser diode and also having a handpiece with a disposable, bendable tip cannula is disclosed.
Abstract:
Mouthpieces having activated textured surfaces that can be implemented using repetitive movement mechanisms and energy (e.g., electromagnetic radiation) emitting sources are disclosed. The mouthpieces may be used to provide detection, treatment and management of conditions including tooth discoloration and periodontal disease. Implementations can include a low-profile mouthpiece or a mouthpiece covering only front sides of the upper and lower teeth. Other combinations may include full-mouth implementations suitable for simultaneously covering part or all of a patient's upper and lower rows of teeth. The activated textured surfaces may include a surface topography consisting of bristles.
Abstract:
A device for imparting therapeutic doses to living tissue is disclosed. The device includes a planar carrier including or structured to adjustably accommodate a multitude of electrodes. Positions of the electrodes may be altered by a user during a treatment procedure involving the impartation of therapeutic doses to the living tissue.
Abstract:
An illumination device for medical and dental procedures is described. The illumination device includes an elongate body configured to contain two or more optical fibers to transmit electromagnetic energy from a power source toward a target surface. The distal end of the illumination device is illustrated as a unitary structure, and the proximal end is illustrated as having multiple proximal end members. The illumination device includes two or more optical fibers for transmitting energy toward the distal end, and at least one optical fiber for transmitting energy from the distal end toward the proximal end of the device.
Abstract:
An electromagnetic energy output device in the form of laser handpiece and a trunk assembly is disclosed. The electromagnetic energy output device includes a digital camera and electromagnetic energy waveguides for emitting illumination or excitation light energy to enhance user viewability of a target surface and signal analysis and to receive electromagnetic energy such as return excitation light. An image acquisition fitting routes images acquired at or in a vicinity of the distal end of the electromagnetic energy output device. The image acquisition fitting can include an attachable or clip-on element or set of elements. In other implementations, the image acquisition fitting may be securable, in whole or in part, within an interior of the electromagnetic energy output device.
Abstract:
A medical laser is described that contains a modulator or saturable absorber. The laser produces output optical energy suitable for cutting tissue while minimizing wasted output optical energy that could result in unnecessary pain to a patient. The medical laser described enables efficient, effective cutting of tissue.
Abstract:
A laser handpiece is disclosed, including a shaped fiber optic tip having a side-firing output end with a double bevel-cut shape. The shaped fiber optic tip can be configured to side- fire laser energy in a direction away from a laser handpiece and toward sidewalls of a treatment or target site.