Abstract:
A bearing housing (12) for a turbocharger (10) includes a split (60) defining a first bearing housing segment (62) and a second bearing housing segment (64). At least one channel (74, 84) for transporting fluid within the bearing housing (12) crosses the split (60) such that the channel (74, 84) extends within the first bearing housing segment (62) and the second bearing housing segment (64). A dowel (82, 92) having a hollow interior is inserted in the channel (74, 84) to align the first and second bearing housing segments (62, 64) and allows fluid to flow through the channel (74, 84).
Abstract:
A turbocharger rotating assembly (125) includes a shaft (20) rotatably supported in a bearing housing (123) via bearings (26, 128), a compressor impeller (18) mounted on the shaft (20), and an oil flinger (122) disposed on the shaft (20) between the bearings (26, 128) and the compressor impeller (18). The turbocharger (100) further includes an insert (134) disposed in the shaft-receiving axial bore (120) so as to surround the oil flinger (122), and a purge seal (160) operatively positioned in an interface (131) between the insert (134) and the oil flinger (122), whereby the purge seal (160) is configured to minimize oil passage from the bearing housing (123) into the interface (131). An annular cavity (150) encircles the radially outward-facing surface (138) of the insert (134), the cavity (150) forming a portion of a fluid path configured to deliver pressurized fluid to the interface (131).
Abstract:
A rotor assembly (164) is provided for a switched reluctance motor (160) in which nonmetallic, nonconductive pins (5) pass through a stack (2) of magnetic laminate plates (3).