Abstract:
Manufacturing-friendly and scalable methods for the production of silicon micro- and nanostructures, including silicon nanotubes, are described. The inventive methods utilize conventional integrated circuit and MEMS manufacturing processes, including spin-coating, photolithography, wet and dry silicon etching, and photoassisted electrochemical etch processes. The invention also provides a novel mask, for maximizing the number of tubes obtained per surface area unit of the silicon substrate on which the tubes are built. The resulting tubes have thick and straight outer walls, as well as high aspect ratios.
Abstract:
Novel compositions and methods of using those compositions to form high refractive index coatings are provided. The compositions preferably comprise both a reactive solvent and a high refractive index compound. Preferred reactive solvents include aromatic resins that are functionalized with one or more reactive groups (e.g., epoxides, vinyl ethers, oxetane), while preferred high refractive index compounds include aromatic epoxides, vinyl ethers, oxetanes, phenols, and thiols. An acid or crosslinking catalyst is preferably also included. The inventive compositions are stable under ambient conditions and can be applied to a substrate to form a layer and cured via light and/or heat application. The cured layers have high refractive indices and light transmissions.
Abstract:
Novel compositions and methods of using those compositions to form high refractive index coatings are provided. The compositions preferably comprise both a reactive solvent and a high refractive index compound. Preferred reactive solvents include aromatic resins that are functionalized with one or more reactive groups (e.g., epoxides, vinyl ethers, oxetane), while preferred high refractive index compounds include aromatic epoxides, vinyl ethers, oxetanes, phenols, and thiols. An acid or crosslinking catalyst is preferably also included. The inventive compositions are stable under ambient conditions and can be applied to a substrate to form a layer and cured via light and/or heat application. The cured layers have high refractive indices and light transmissions.