Abstract:
At a first frequency (30), flux transitions are achieved which result in large excursions of the information signal. The first frequency approximates the maximum frequency at which such excursions can occur. A second higher frequency (89) is utilized to create small or no excursions. At this second frequency, a complete flux transition is not achieved. Information is represented by the presence or absence of excursions. An adaptive, self-compensating scheme, which is self-adjusting in real time and provides for recovery of the nominal flux transition independent of the information pattern, is utilized. Data recovery is qualified through the use of an excursion detection scheme which compares variations in the tracking peak (91) detect value with the input signal separated by an excursion threshold value. When the input waveform falls below the adaptive threshold voltage (94), a data transition is defined.