Abstract:
The present disclosure relates to a copper based microcrystalline alloy and a preparation method thereof, and an electronic product. In percentage by weight and based on the total amount of the copper based microcrystalline alloy, the copper based microcrystalline alloy includes: 30-60 wt % of Cu; 25-40 wt % of Mn; 4-6 wt % of Al; 10-17 wt % of Ni; 0.01-10 wt % of Si; and 0.001-0.03% of Be.
Abstract:
The present invention discloses a method for metallizing a plastic surface. The method may comprise the steps of: 1) gasifying the plastic surface to expose the electroless plating promoter; and 2) electroless plating a layer of copper or nickel on the plastic surface, followed by electroplating or a second electroless plating to form a metallized layer on the plastic surface. Further, the present invention discloses a method for preparing a plastic article and a plastic article as manufactured by the method as described.
Abstract:
A method of joining an amorphous alloy material to a heterogeneous material and a composite formed by the same are provided. The method comprises steps of: placing a pre-formed piece made of one of the amorphous alloy material and the heterogeneous material into a mold; heating the other of the amorphous alloy material and the heterogeneous material to a predetermined temperature, and casting the other of the amorphous alloy material and the heterogeneous material into the mold to form a transition connection part joining the amorphous alloy material to the heterogeneous material and having a fusion welded structure, a microstructure reinforcing connection structure and a composite connection structure; and cooling the amorphous alloy material and the heterogeneous material at a rate higher than a critical cooling rate of the amorphous alloy material to obtain a composite formed by joining the amorphous alloy material to the heterogeneous material by the transition connection part.
Abstract:
Metalized plastic substrates, and methods thereof are provided herein. The method includes providing a plastic having a plurality of accelerators dispersed in the plastic. The accelerators have a formula ABO3, wherein A is one or more elements selected from Groups 9, 10, and 11 of the Periodic Table of Elements, B is one or more elements selected from Groups 4B and 5B of the Periodic Table of Elements, and O is oxygen. The method includes the step of irradiating a surface of plastic substrate to expose at least a first accelerator. The method further includes plating the irradiated surface of the plastic substrate to form at least a first metal layer on the at least first accelerator, and then plating the first metal layer to form at least a second metal layer.
Abstract:
An electric heater, and an apparatus, a heating and air conditioning system and a vehicle, each comprising the electric heater, are provided. The electric heater comprises an outer frame; a heating core configured to connect to a power source and disposed within the outer frame; and a sealing-waterproof glue member disposed within the outer frame and configured to encase at least one end of the heating core. The heating core further comprises: a plurality of heat dissipating components and heating components arranged alternately, and each of the heat dissipating component is coupled with a heating component via a thermal conductor. Each of the heating components further comprises a core tube and a positive temperature coefficient thermistor disposed in the core tube.
Abstract:
A ceramic and a preparation method therefor are provided. The ceramic includes a zirconia matrix, and an additive dispersed inside and on an outer surface of the zirconia matrix. The additive is an oxide including elements A and B, where A is selected from at least one of Ca, Sr, Ba, Y, and La, and B is selected from at least one of Cr, Mn, Fe, Co, and Ni.
Abstract:
A metal-ceramic composite includes a ceramic substrate and a metallic composite. A groove is formed in a surface of the ceramic substrate and the metallic composite is filled in the groove. The metallic composite includes a Zr based alloy-A composite. A includes at least one selected from a group consisting of W, Mo, Ni, Cr, stainless steel, WC, TiC, SiC, ZrC and ZrO2. Based on the total volume of the Zr based alloy-A composite, the content of A is about 30% to about 70% by volume. A method for preparing the metal-ceramic composite is also provided.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin is a mixture of a main resin and a polyolefin resin, the main resin is a mixture of polyphenylene oxide and a polyamide, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin includes a mixture of a main resin and a polyolefin resin, the main resin is a polycarbonate, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A Zr-based composite ceramic material, a preparation method thereof, and a shell or decoration are provided. The Zr-based composite ceramic material includes a zirconia matrix, a cubic Sr0.82NbO3 stable phase, a Ca10(PO4)6(OH)2 phase, and a SrAl12O19 phase, and the cubic Sr0.82NbO3 stable phase, the Ca10(PO4)6(OH)2 phase and the SrAl12O19 phase are dispersed within the zirconia matrix.