Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly comprises a main body having internal walls and external walls, and a plurality of cuvettes within the main body at least partially being defined by the internal walls. Each of the plurality of cuvettes has a liquid-input chamber for receiving a respective one of the plurality of liquid samples, a filter, and an optical chamber for receiving a respective filtered liquid sample caused by passing the respective one of the plurality of liquid samples through the filter. Each of the optical chambers includes an entry window for allowing transmission of an input light beam through the filtered liquid sample and an exit window for transmitting a forward scatter signal caused by the particles within the filtered liquid sample.
Abstract:
An instrument determines a concentration of bacteria in a plurality of fluid samples, and comprises a housing, a rotatable platform, a plurality of fluid containers, a light source, a sensor, and a motor. The rotatable platform is within the housing. The fluid containers are located on the rotatable platform. Each fluid container holds a corresponding one of the plurality of fluid samples, and has an input window and an output window. The light source provides an input beam for transmission into the input windows of the fluid containers and through the corresponding fluid samples. The input beam creates a forward-scatter signal associated with the concentration of bacteria. The motor rotates the rotatable platform so that the input beam sequentially passes through each fluid sample. A sensor within the housing detects the forward-scatter signal exiting from the output window associated with the fluid sample receiving the input beam.
Abstract:
An optical measurement instrument is an integrated instrument that includes an optical cavity with a light source, a sample cuvette, and an optical sensor. The instrument can be used for taking measurements of organism concentration in one or more samples. Preferably, the instrument holds multiple, individually-loaded, independent fluid samples and determines bacteria concentration via a forward-scattering signal. The instrument can incorporate onboard incubation to promote bacterial growth in the samples such that, once a certain bacterial concentration is achieved, the higher concentration sample can be used with a mass spectrometer to identify the type of bacteria. The instrument and mass spectrometer can be a part of a network for medical diagnostic testing data where data is stored in a manner that is inherently untainted by patient identifiable information.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly comprises a main body having internal walls and external walls, and a plurality of cuvettes within the main body at least partially being defined by the internal walls. Each of the plurality of cuvettes has a liquid-input chamber for receiving a respective one of the plurality of liquid samples, a filter, and an optical chamber for receiving a respective filtered liquid sample caused by passing the respective one of the plurality of liquid samples through the filter. Each of the optical chambers includes an entry window for allowing transmission of an input light beam through the filtered liquid sample and an exit window for transmitting a forward scatter signal caused by the particles within the filtered liquid sample.
Abstract:
An optical measurement instrument is an integrated instrument that includes an optical cavity with a light source, a sample cuvette, and an optical sensor. The light source and sensor are on a bench that is on a translational or rotational mechanical platform such that optical beam can be moved to multiple sample containers. The instrument can be used for taking measurements of organism concentration in multiple samples as a production tool for microbiology. Preferably, the instrument holds multiple, individually-loaded, independent fluid samples and determines bacteria concentration via a forward-scattering signal. The instrument can incorporate onboard incubation to promote bacterial growth in the samples during the test. In another aspect, the instrument can be a part of a network for medical diagnostic testing data where data is stored in a manner that is inherently untainted by patient identifiable information.
Abstract:
An instrument determines a concentration of bacteria in a plurality of fluid samples, and comprises a housing, a rotatable platform, a plurality of fluid containers, a light source, a sensor, and a motor. The rotatable platform is within the housing. The fluid containers are located on the rotatable platform. Each fluid container holds a corresponding one of the plurality of fluid samples, and has an input window and an output window. The light source provides an input beam for transmission into the input windows of the fluid containers and through the corresponding fluid samples. The input beam creates a forward-scatter signal associated with the concentration of bacteria. The motor rotates the rotatable platform so that the input beam sequentially passes through each fluid sample. A sensor within the housing detects the forward-scatter signal exiting from the output window associated with the fluid sample receiving the input beam.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly comprises a main body having internal walls and external walls, and a plurality of cuvettes within the main body at least partially being defined by the internal walls. Each of the plurality of cuvettes has a liquid-input chamber for receiving a respective one of the plurality of liquid samples, a filter, and an optical chamber for receiving a respective filtered liquid sample caused by passing the respective one of the plurality of liquid samples through the filter. Each of the optical chambers includes an entry window for allowing transmission of an input light beam through the filtered liquid sample and an exit window for transmitting a forward scatter signal caused by the particles within the filtered liquid sample.
Abstract:
An optical measurement instrument is an integrated instrument that includes an optical cavity with a light source, a sample cuvette, and an optical sensor. The instrument can be used for taking measurements of organism concentration in one or more samples. Preferably, the instrument holds multiple, individually-loaded, independent fluid samples and determines bacteria concentration via a forward-scattering signal. The instrument can incorporate onboard incubation to promote bacterial growth in the samples such that, once a certain bacterial concentration is achieved, the higher concentration sample can be used with a mass spectrometer to identify the type of bacteria. The instrument and mass spectrometer can be a part of a network for medical diagnostic testing data where data is stored in a manner that is inherently untainted by patient identifiable information.
Abstract:
The present invention is an optical measurement system for measuring a liquid sample within a well. The system comprises a light source configured to transmit light though the well, a detector configured to measure optical signals derived from the transmitted light, and a tunable optical element. The tunable optical element is positioned between the light source and the well. The tunable optical element is operable to shape the light to compensate for distortions induced by a surface of the liquid sample. The detector is preferably located below the well for receiving a forward scatter signal indicative of at least one characteristic of the particles within the liquid sample.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly comprises a main body having internal walls and external walls, and a plurality of cuvettes within the main body at least partially being defined by the internal walls. Each of the plurality of cuvettes has a liquid-input chamber for receiving a respective one of the plurality of liquid samples, a filter, and an optical chamber for receiving a respective filtered liquid sample caused by passing the respective one of the plurality of liquid samples through the filter. Each of the optical chambers includes an entry window for allowing transmission of an input light beam through the filtered liquid sample and an exit window for transmitting a forward scatter signal caused by the particles within the filtered liquid sample.