Abstract:
Systems and methods to create and store a liquid phase mix of natural gas absorbed in light-hydrocarbon solvents under temperatures and pressures that facilitate improved volumetric ratios of the stored natural gas as compared to CNG and PLNG at the same temperatures and pressures of less than −80° to about −120° F. and about 300 psig to about 900 psig. Preferred solvents include ethane, propane and butane, and natural gas liquid (NGL) and liquid pressurized gas (LPG) solvents. Systems and methods for receiving raw production or semi-conditioned natural gas, conditioning the gas, producing a liquid phase mix of natural gas absorbed in a light-hydrocarbon solvent, and transporting the mix to a market where pipeline quality gas or fractionated products are delivered in a manner utilizing less energy than CNG, PLNG or LNG systems with better cargo-mass to containment-mass ratio for the natural gas component than CNG systems.
Abstract:
An integrated ship mounted system for loading a gas stream, separating heavier hydrocarbons, compressing the gas, cooling the gas, mixing the gas with a desiccant, blending it with a liquid carrier or solvent, and then cooling the mix to processing, storage and transportation conditions. After transporting the product to its destination, a hydrocarbon processing train and liquid displacement method is provided to unload the liquid from the pipeline and storage system, separate the liquid carrier, and transfer the gas stream to a storage or transmission system.
Abstract:
A multi-vessel gas storage system and liquid displacement shuttle system that utilizes a liquid-piston shuttled to alternate reservoirs and tank banks to evacuate stored gas or other fluids from storage vessels. Preferably, the gas storage and fluid displacement shuttle system includes multiple pressure storage vessels or tanks arranged in tank banks that are preferably coupled in parallel at one end to a high pressure gas manifold to exhaust the stored gas or other fluids from the vessels and coupled in parallel at another end to separate fluid shuttle circuits. The fluid shuttle circuits include cross-piped fluid fill and drain manifolds that are fluidly linked through interposing reservoirs and pumps. In operation, the stored gas or other fluids are evacuated from the storage vessels by shuttling the volume of displacement liquid between alternating banks of storage tanks and reservoirs with alternating pumps.
Abstract:
Systems and processes that facilitate the absorption of natural gas or methane through the interaction of moderate pressure and low temperature into a liquid or liquid vapor medium for storage and transport, and back into a gas for delivery to market. In a preferred embodiment, the absorptive properties of ethane, propane and butane under moderate conditions of temperature and pressure (associated with a novel mixing process) are utilized to store natural gas or methane at more efficient levels of compressed volume ratio than are attainable with natural gas alone under similar holding conditions. The preferred mixing process efficiently combines natural gas or methane with a solvent medium such as liquid ethane, propane, butane, or other suitable fluid, to form a concentrated liquid or liquid vapor mixture suited for storage and transport. The solvent medium is preferably recycled in the conveyance vessel on unloading of the natural gas.
Abstract:
A multi-vessel gas storage system and liquid displacement shuttle system that utilizes a liquid-piston shuttled to alternate reservoirs and tank banks to evacuate stored gas or other fluids from storage vessels. Preferably, the gas storage and fluid displacement shuttle system includes multiple pressure storage vessels or tanks arranged in tank banks that are preferably coupled in parallel at one end to a high pressure gas manifold to exhaust the stored gas or other fluids from the vessels and coupled in parallel at another end to separate fluid shuttle circuits. The fluid shuttle circuits include cross-piped fluid fill and drain manifolds that are fluidly linked through interposing reservoirs and pumps. In operation, the stored gas or other fluids are evacuated from the storage vessels by shuttling the volume of displacement liquid between alternating banks of storage tanks and reservoirs with alternating pumps.
Abstract:
Bulk storage of natural gas or methane is facilitated by absorbing and storing the gas in a liquefied medium through the interaction of moderate pressure, low temperature and a solvent medium. Systems and processes are provided that facilitate the absorption of natural gas or methane into a liquid or liquid vapor medium for storage and transport, and back into a gas for delivery to market. In a preferred embodiment, the absorptive properties of ethane, propane and butane under moderate conditions of temperature and pressure (associated with a novel mixing process) are utilized to store natural gas or methane at more efficient levels of compressed volume ratio than are attainable with natural gas alone under similar holding conditions. The preferred mixing process efficiently combines natural gas or methane with a solvent medium such as liquid ethane, propane, butane, or other suitable fluid, to form a concentrated liquid or liquid vapor mixture suited for storage and transport. The solvent medium is preferably recycled in the conveyance vessel on unloading of the natural gas.
Abstract:
Bulk storage of natural gas or methane is facilitated by absorbing and storing the gas in a liquefied medium through the interaction of moderate pressure, low temperature and a solvent medium. Systems and processes are provided that facilitate the absorption of natural gas or methane into a liquid or liquid vapor medium for storage and transport, and back into a gas for delivery to market. In a preferred embodiment, the absorptive properties of ethane, propane and butane under moderate conditions of temperature and pressure (associated with a novel mixing process) are utilized to store natural gas or methane at more efficient levels of compressed volume ratio than are attainable with natural gas alone under similar holding conditions. The preferred mixing process efficiently combines natural gas or methane with a solvent medium such as liquid ethane, propane, butane, or other suitable fluid, to form a concentrated liquid or liquid vapor mixture suited for storage and transport. The solvent medium is preferably recycled in the conveyance vessel on unloading of the natural gas.
Abstract:
This invention provides a means of loading, processing and conditioning raw production gas, production of CGL, storage, transport, and delivery of pipeline quality natural gas or fractionated products to market. The CGL transport vessel utilizes a pipe based containment system to hold more densely packed constituents of natural gas held within a light hydrocarbon solvent than it is possible to attain for natural gas alone under such conditions. The containment system is supported by process systems for loading and transporting the natural gas as a liquid and unloading the CGL from the containment system and then offloading it in the gaseous state. The system can also be utilized for the selective storage and transport of NGLs to provide a total service package for the movement of natural gas and associated gas production. The mode of storage is suited for both marine and land transportation and configured in modular form to suit a particular application and/or scale of operation.
Abstract:
A blast-resistant panel may include a layer of a pre-cured elastomeric material having a predetermined thickness, a body portion, and a plurality of flanges, each of the plurality of flanges having a substantially equal width and depending away from a same side and at approximately equivalent right angles to the body portion. The blast-resistant panel may also include a plurality of fastener elements for securing the cured elastomeric material layer to a surface of a structure through the plurality of flanges of cured elastomeric material.
Abstract:
Systems and methods for optimizing speaker performance. The system includes a self-contained speaker unit that includes a speaker, an amplifier coupled to the speaker, and a processor coupled to the amplifier. The processor receives a first sound signal from a receiver and a second sound signal from a microphone, processes the first sound signal based on a plurality of parameters, outputs the processed sound signal to the speaker, and generates a video signal based on the second sound signal. A wireless remote control allows a user to manipulate the parameters. The processor generates a test sound signal and outputs it to the receiver. The receiver processes the test sound signal and returns it to the processor for output through the speaker. The video signal includes a graphical user interface having a frequency response graph of the second sound signal and an eight-band equalizer.