Abstract:
A method and an apparatus for monitoring simultaneously the temperature and the velocity of sprayed particles. The system is comprised of a sensor head attached to the spray gun, an optical fibre transmitting the collected radiation to detection apparatus, and a protective detection cabinet having the detection apparatus that incorporates two detectors. A two-slit or multiple-slit mask is located in the sensor head at the end of the optical fibre. For the temperature measurements, the particle emitted radiation collected by the sensor head is transmitted to two photodetectors, filtered by interference filters at two adjacent wavelengths. The particle temperature may be computed from the ratio of the detector outputs. To measure the velocity, the two-slit system collects radiation emitted by the in-flight particles travelling in the sensor field of view, which generates a double peak light pulse transmitted through the optical fibre. The time delay between these two peaks may be evaluated automatically and the particle velocity computed knowing the distance between the two slit images.
Abstract:
In a method of monitoring in-flight particles, a mask in a is placed in a plane generally parallel to the direction of travel of the particles. The mask defines at least two slits that are generally parallel and lie in a direction having at least a component at right angles to the direction of travel. The slits have their ends offset relative to each other. The slits radiation emitted, scattered or absorbed by the particles is monitored as they traverse the slits field of view. The particles for which the radiation, emitted, scattered or absorbed which is collected through each slit as they sequentially traverse said slits bears a predetermined relationship are identified, and the size of the identified particles is determined from the amount of radiation emitted, scattered or absorbed as the identified particles traverse the slits.
Abstract:
In a method of monitoring in-flight particles, a mask in a is placed in a plane generally parallel to the direction of travel of the particles. The mask defines at least two slits that are generally parallel and lie in a direction having at least a component at right angles to the direction of travel. The slits have their ends offset relative to each other. The slits radiation emitted, scattered or absorbed by the particles is monitored as they traverse the slits field of view. The particles for which the radiation, emitted, scattered or absorbed which is collected through each slit as they sequentially traverse said slits bears a predetermined relationship are identified, and the size of the identified particles is determined from the amount of radiation emitted, scattered or absorbed as the identified particles traverse the slits.
Abstract:
It has been surprisingly found that injecting ceria-based particles (mean size less than 200nm) suspended in a combustible organic solvent into a plume having a maximum temperature between about 2,600°C and 4,000°C to impart a mean temperature to the particles from about 2,600°C to about 3,800°C, and to accelerate the particles to a mean velocity between about 600 to 1000 m/s, produces a thin, uniform, dense, crack-free, nanocrystalline ceria-based coating, which may be applied on porous cermet or metal substrate, for example. The physical environment of a high-velocity oxy-fuel (HVOF) thermal spraying gun suitably deployed using standard fuels produces these conditions. The method of the present invention is particularly useful for the cost-effective fabrication of ceria-containing electrolytes for solid oxide fuel cells (SOFCs).
Abstract:
In a method of monitoring in-flight particles, a mask in a is places in a plane generally parallel to the direction of travel of the particles. The mask defines at least two slits that are generally parallel and lie in a direction having at least a component at right angles to the direction of travel. The have their ends offset relative to each other. The radiation emitted, scattered or absorbed by the particles is monitored as they traverse the slits. The particles for which the radiation, emitted, scattered or absorbed at each slit as they sequentially traverse said slits bears a predetermined relationship are identified, and the size of the identified particles is determined from the amount of radiation emitted, scattered or absorbed as the identified particles traverse the slits.
Abstract:
In a method of monitoring in-flight particles, a mask in a is placed in a plane generally parallel to the direction of travel of the particles. The mask defines at least two slits that are generally parallel and lie in a direction having at least a component at right angles to the direction of travel. The slits have their ends offset relative to each other. The slits radiation emitted, scattered or absorbed by the particles is monitored as they traverse the slits field of view. The particles for which the radiation, emitted, scattered or absorbed which is collected through each slit as they sequentially traverse said slits bears a predetermined relationship are identified, and the size of the identified particles is determined from the amount of radiation emitted, scattered or absorbed as the identified particles traverse the slits.
Abstract:
By engineering thermal spray parameters, such as temperature and velocity, a nd engineering feedstock powder size and morphology, ceramic coatings may be produced having desired mechanical and thermal properties. The ceramic therm al spray coating may have a microstructure having about 10-80 % by cross- sectional area of a particulate phase based on surface area of the coating, and the particulate phase is uniformly distributed throughout the coating. T he particulate phase is an unmelted portion of the thermal sprayed feedstock, which is highly porous and may be produced by agglomerating nanoparticles of the ceramic. Such coatings can be applied as TBCs or as abradable coatings.