Abstract:
An electrocatalyst ink composition comprising a liquid vehicle, particles comprising at least one electrocatalyst metal, and at least one copolymer dispersant comprising at least one polyalkylene oxide segment.
Abstract:
Fuel cell components incorporating modified carbon products. The modified carbon products advantageously enhance the properties of the components leading to more efficiency within the fuel cell.
Abstract:
Solid absorbent materials that are useful for absorption of chemical species from a fluid, such as a gas stream or a liquid stream. The absorbent materials are formed by spray processing and posses a well-defined chemical composition and microstructure. The absorbent materials can have a high absorption capacity for a chemical species such as H2S, CO2, NOX and H2 and have a high recylability, such that the chemical species can be absorbed and desorbed over a large number of cycles.
Abstract:
Composite particles comprising inorganic nanoparticles disposed on a substrate particle and processes for making and using same. A flowing aerosol is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains a liquid vehicle and at least one precursor. At least a portion of the liquid vehicle is removed from the droplets of precursor medium under conditions effective to convert the precursor to the nanoparticles on the substrate and form the composite particles.
Abstract:
In a method of producing an electrode comprising a layer of an electrocatalytic material on a substrate, at least one liquid medium containing a precursor to the electrocatalytic material is atomized to produce droplets containing the precursor and the droplets are entrained in a stream of carrier gas moving in a first direction. The droplets entrained in the carrier gas stream are then heated to remove the liquid medium and convert the precursor to particles of the electrocatalytic material. The electrocatalytic material particles entrained in said capier gas stream are then brought into contact with the substrate, whereby the electrocataiytic particles are separated from the carrier gas and collected on the substrate. By imparting relative movement between the substrate and the carrier gas stream in a second direction substantially perpendicular to the first direction a continuous layer of the electrocatalytic material can be progressively deposited on the substrate.
Abstract:
Compositions and methods for the manufacture of electrodes for fuel cells. The compositions and methods are particularly useful for the manufacture of anodes and cathodes for proton exchange membrane fuel cells, particularly direct methanol fuel cells. The methods can utilize direct-write tools to deposit ink compositions and form functional layers of a membrane electrode assembly having controlled properties and enhanced performance.
Abstract:
PROBLEM TO BE SOLVED: To provide electrode catalyst powder such as carbon composite electrode catalyst powder and a method for manufacturing an electrode catalyst powder. SOLUTION: The powder has well-controlled microstructure and morphology. The method includes a manufacture of particles formed of the aerosol of a precursor by heating the aerosol at a relatively low temperature like about 400°C or less. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
A process for the activation of a membrane electrode assembly, such as a direct methanol fuel cell membrane electrode assembly, with a hydrocarbon fuel, e.g., an alkanol fuel such as methanol, and an oxidant is described. The process comprises repeatedly applying an increasing or decreasing potential in each of a plurality of cycles over a voltage range of at least 0.1 volts, e.g., at least 0.2 volts or at least 0.3 volts, until the membrane electrode assembly is substantially activated. The cycles optionally are organized in cycle sets with rest periods therebetween. The temperature at which the cycles are run optionally is increased or decreased in a respective cycle set.
Abstract:
A process for preparing catalyst coated membranes and membrane electrode assemblies for use in direct methanol fuel cells is provided. Cathode and anode layers are formed by spraying catalyst-containing inks onto a novel framed electrolytic membrane to form a catalyst coated membrane. The spraying process optionally employs one or more masks, which carefully control where the catalyst-containing ink is deposited. Following application of the cathode and anode layers, diffusion layers are prepared and inserted onto the catalyst coated membranes, and pressed to form membrane electrode assemblies.