Abstract:
The present invention relates to methods of nucleic acid analyte detection by PCR. In particular, methods and kits for the detection of a plurality of nucleic acid analytes and the generation of kinetic signatures are provided. Further provided are methods and kits of nested PCR and PCR using limiting primers.
Abstract:
This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
Abstract:
Methods for regulating and continuously monitoring a chemical synthesis reaction using micro-objects and electro-magnetic radiation include introducing micro-objects to a reaction mixture, determining a plasm on resonance of the micro-object based on a characteristic of the micro-object, and applying electro-magnetic radiation that is wavelength- matched to the plasmon resonance of the micro-object.
Abstract:
Some implementations of the disclosure describe a blood pressure measurement apparatus and method that enable continuous, non-invasive blood pressure measurement using sound and ultrasound transducers. In one implementation, a blood pressure measurement device includes: a first transducer configured to emit multiple soundwaves having multiple frequencies, the soundwaves configured to cause a blood vessel of a subject to vibrate; a second transducer configured to capture one or more ultrasound images of the blood vessel; and a processing device configured to: determine, based on the one or more ultrasound images, a wall thickness, a radius, and a resonant frequency of the blood vessel; and calculate, based on the wall thickness, the radius, and the resonant frequency, a blood pressure of the subject.
Abstract:
Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
Abstract:
The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
Abstract:
Methods and devices for molecular analysis are disclosed, based on centrifugation. A centrifuge device has centrifuge tubes and elements to create electric fields. The shear forces applied to the cells inside a solution with biological molecules permit the performance of different analytic techniques, such as lysis and sample preparation for PCR.
Abstract:
A system comprises an energy-harvesting unit configured to provide power to the system from electromagnetic radiation, a transducer configured to detect measureable quantities, an electronic circuit and an antenna, wherein the electronic circuit is configured to encode the measureable quantities and transmit them to the antenna, the antenna is configured to transmit the encoded measureable quantities, and wherein the energy-harvesting unit, the transducer, the electronic circuit and the antenna are monolithically integrated in the system.
Abstract:
A printed circuit board structure is coated with an encapsulant within which microfluidic channels have been formed. The microfluidic channels are formed by soldering fluidic connections to metal traces on a surface of the printed circuit board structure prior to encapsulation. The metal traces are removed by etching after encapsulation to form microchannels within the encapsulant.
Abstract:
Methods and devices for isolating and sorting nanoparticles are disclosed herein. Nanopores of a desired size can be formed in silicon dioxide membranes and used as filters to separate nanoparticles. Devices are also provided herein for sorting nanoparticles with multiple filters having various sized nanopores.