Abstract:
PROBLEM TO BE SOLVED: To provide transparent conductors and methods of manufacturing the same, in particular, high-throughput coating methods.SOLUTION: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires 16 which may be embedded in a matrix 18. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates. There is provided transparent conductors having desirable electrical, optical and mechanical properties, in particular, transparent conductors that are adaptable to any substrates, and can be manufactured and patterned in a low-cost, high-throughput process.
Abstract:
Systems, devices, and methods for designing and/or manufacturing transparent conductors having nanowires. A system is operable to evaluate optical and electrical manufacturing criteria for a transparent conductor. The system includes a database including stored reference transparent conductor data, and a controller subsystem configured to compare input acceptance manufacturing criteria for a transparent conductor to stored reference transparent conductor data.
Abstract:
A seed layer is formed on a substrate using a first biological agent. The seed layer may comprise densified nanoparticles which are bound to the biological agent. The seed layer is then used for a deposition of a metal layer, such as a barrier layer, an interconnect layer, a cap layer and/or a bus line for a solid state device.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
NANOWIRES-BASED TRANSPARENT CONDUCTORS A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates
Abstract:
OF THE DISCLOSUREA transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.Figure 24
Abstract:
Disclosed herein is a method of fabricating a transparent conductor which comprises depositing a plurality of metal nanowires on a surface of a substrate, the metal nanowires being dispersed in a liquid; and forming a metal nanowire network layer on the substrate by allowing the liquid to dry, depositing a matrix material on the metal nanowire network layer, and curing the matrix material to form a matrix, the matrix and the metal nanowires embedded therein forming a conductive layer, wherein the substrate is flexible, and wherein the substrate is driven by a rotating reel along a traveling path, and the metal nanowires are deposited at a first deposition station along the traveling path, and the matrix material is deposited at a second deposition station along the traveling path.
Abstract:
Methods of enhancing contrast ratio of conductive nanostructure-based transparent conductors are described. Contrast ratio is significantly improved by reduction of light scattering and reflectivity of the nanostructures through steps of plating the conductive nanostructures followed by etching or oxidizing the underlying conductive nanostructures.